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LETTER TO THE EDITOR

DEVELOPMENTS IN EEG ANALYSIS, PROTOCOL SELECTION,
AND FEEDBACK DELIVERY

Bill Scott

BrainPaint, Inc., Malibu, California, USA

It stands to reason that the better the extracted information from the electroencephalogram
(EEG), the better the data analysis and subsequent EEG biofeedback. At the core of digital
signal processing used in our field is a linear filtering technology that discards significant
EEG features. Brainwaves are nonlinear, nonstationary, and noisy signals. The purpose of this
letter to the editor is to illuminate the Hilbert-Huang Transform’s (HHT’s) (Huang et al.,
1998) ability to empirically quantify nonlinear, nonstationary signals such as the EEG. I
demonstrate how this technique can detect and extract a tiny noisy complex waveform from
a raw signal while preserving the majority of the important information from the original
source. I contrast and compare the HHT to other quantitative techniques.

Linear filters, such as Fourier-based Transforms
(FFTs), measure brainwaves as if they were a
series of tuning forks ringing in various
volumes. What happens when the tuning forks
are quickly changing in frequency? The FFT
can no longer accurately read them because
the FFT assumes that the signal section being
analyzed (the sample) is repeated over and
over again. The FFTs requires linearity and
the data must be stationary—it provides infor-
mation on microvolt levels over a selected fre-
quency range but discards information about
the varying frequency changes and microvolts
at every point in the sample across time. This
results in an unnatural uniformity. By contrast,
when using the Hilbert-Huang Transform
(HHT), all the different shapes of the waves
forms, also known as morphology, are repre-

sented. More specifically, the HHT preserves
the morphologies peak broadness, peak
spacing, and tangents from the zero point to
peak envelope angles. This information may
represent a normal versus abnormal distribution
curve of power. Consequently, any information
related to the signal morphology is lost
(Klimesch, 1999). Using the short-time Fourier
transform instead assumes the stationarity of
the signal within the time frame; however, this
is not practical when inspecting naturally occur-
ring signals such as the electroencephalogram
(EEG) (Walker & Kozlowski, 2005).

It is worth mentioning a few additional
transforms that have become standards in an
attempt to more accurately detect changes in
time-frequency analysis. Wavelet transforms
can analyze finite length signals, but they are
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not adaptive (Huang et al., 1998). This makes
time-frequency analysis possible, but the
energy that escapes from the wavelet transform
causes the time-frequency representation to
appear broader and less variable than the
actual spectrum. Wavelet analysis is linear
whether it is distinct or continuous, so it
doesn’t work well for nonlinear data, but it
can be used for nonstationary data. The distri-
bution in the Wigner-Ville transformation is
Fourier-based, but it introduces the idea of
negative energy (Klimesch, 1999). Likewise,
the Gabor transform is somewhat similar to
the short-time Fourier transform, but it uses
fixed windows (Saeid & Chambers, 2007).
Independent component analysis is currently
a popular method for blind source separation
of linear or mildly nonlinear mixtures unlike
the EEG. However, nonlinear independent
component analysis does not necessarily lead
to nonlinear blind source separation. Non-
linear blind source separation is impossible
without prior knowledge of the mixing model
(Jutten & Taleb, 2000). In summary, there are
problems with all of these transforms when
applied to nonlinear and nonstationary data.

What is the HHT? It begins with what is
called Empirical Mode Decomposition (EMD),
which is an algorithm based on the local
properties of the signal, at each point of the
signal (Huang et al., 1998). In each section of
signal we first find a local maximum (highest
point above zero) and a local minimum (lowest
point below zero). This is an approximation
of the left half of the wave of the highest fre-
quency contained in that section of the wave.
Halfway between them is an approximation
of the middle (minimumþmaximum=2) about
which that highest frequency wave is oscillat-
ing. By joining up the local maxima and local
minima with a natural cubic spline, the local
middles are found. Now the highest local fre-
quency can be subtracted from the wave and
is replaced by the local middles. The product
of this initial iteration is called the first Intrinsic
Mode Function (IMF). The local middles are
then treated as a new wave. The whole pro-
cedure is then repeated using the local middles
curve as a starting point, again locally, to
extract the next lowest local frequency. This

process is repeated until the last IMF becomes
a monotonic function, which means it fails to
complete more than one full cycle. When these
intrinsic oscillations are summed they equal the
original signal. Having obtained the IMF com-
ponents, we can subject them to the HHT to
obtain the time-frequency-power distribution.
When these intrinsic oscillations are summed
they equal the original signal (see Figure 1).

FIGURE 1. Flowchart of the Empirical Mode Decomposition
procedure.
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Figure 2 is the actual output of raw data
followed by four iterations derived from the sift-
ing process that extracts the first IMF. This 1-s
epoch of EEG was sampled at 256 samples=
second from a subject’s session. The local minima
and maxima are connected with the natural
cubic splines and are, respectively, blue and
red. The emerging IMF is green. The black line

straightening out across the iterations is the mean
envelope. When the standard deviation of the
mean envelope is less than 0.3, the iteration func-
tion is stopped. That mean envelope is then used
as the input signal to decompose the next IMF.

When 60Hz notch filters are applied, the
first IMF is in the gamma range from 38 to
45Hz. This subject’s gamma during that second

FIGURE 2. The extraction iterations for the first 1-s Intrinsic Mode Function (IMF). (Color figure available online.)
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was 38Hz. Figure 3 shows subsequent IMFs
revealing his beta (16Hz), alpha (9Hz), theta
(4Hz), and delta (3Hz). We performed the
HHT on each IMF to reveal its instantaneous
amplitude as well.

In a typical 10-s EEG sample, there could be
100microstates, each with a potentially different
alpha, beta, theta, gamma, and delta content. In
the HHT, each IMF may have a significant
change of frequency 100 times, but it is possible
that the highest local frequency is just ‘‘noise’’
and only some of the lower local frequency IMFs
will reflect the changing microstate.

Figure 4 demonstrates how a small complex
noise signal can be extracted from the rapidly

changing complex signal. The noisy signal
comprised the fourth instantaneous amplitude
of the Hilbert spectrum. It was subtracted from
the raw signal creating a correlation coefficient
of .99 between the raw signal and the raw
signal minus the artifact.

Figure 5 is a demonstration of the Hilbert
Spectrum revealing the expected alpha increase
in instantaneous amplitude in an eyes-open
versus eyes-closed condition.

The HHT was first used by NASA in 1998
and uses the EMD method to decompose a
signal into IMFs. Then it applies the Hilbert
spectral analysis method to get instantaneous
frequency and amplitude data. It evolved

FIGURE 3. Five frequency bands were decomposed from 1 s of raw data. Note. IMF¼ Intrinsic Mode Function. (Color figure available
online.)
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from the need to analyze nonstationary and
nonlinear time series data. The advantages
HHT presents in processing EEG signals is really
only beginning. The reason for this is that it is
such a different point of view, and it has taken
some time to develop schemes to recognize
the really important IMFs in signals that are
being compared.

In just the last 12 months, three EEG studies
using the HHT methodology have reported
findings quite relevant to the field of EEG
biofeedback. The first study (Chia-Lung,
Hsiang-Chih, Chi-Hsun, & Po-Lei, 2010) looked
at event-related potentials from a finger move-
ment exercise. They found that extracting the
relevant IMFs gave excellent noise reduction
compared to other methods. For example,
there is so much noninformation in the signal-
to-noise ratio in the FFT-based methods of
information extraction that multiple averages

of the physical response are needed to average
out the noise from the signal. The adaptive
nature of the EMD method automatically
extracts the signal in an IMF and places the
noise in other IMFs. This happens in a single
trial. The second study (Chien-Chang & Jie,
2010) used the HHT with a radial basis function
neural network to diagnose the kind of obstruc-
tive sleep apnea from electroencephalography.
They classified three types with 92% to 97%
accuracy. Finally IMFs subjected to higher order
crossings and subsequent quadric discriminant
analysis classified six different emotions with
85% accuracy. It was found that an EMD-based
classifier gave significantly greater emotion
recognition than the most commonly used clas-
sifiers (Petrantonakis & Hadjileontiadis, 2010).
The last study may be relevant in many clinical
situations involving anxiety, depression, and
attention deficit because IMF is subjected to
higher order crossings and subsequent quadric
discriminant analysis classified six different
emotions with 85% accuracy. The six specific
emotions were happiness, surprise, anger, fear,
disgust, and sadness.

When the HHT is used in feedback, it
should convey better information about brain
states, which would translate into better results.
We are using a hybrid method of the HHT
(HHHT) in the BrainPaint software whereby
information on changes in the morphology is
translated into fractal image movement. In
addition, we are providing the standard ampli-
tude feedback with thresholds, inhibits, and
rewards through graphs, text, and audio indica-
tors of various movement and muscle tension

FIGURE 4. Artifact removal demonstration via Hilbert-Huang Transform (HHT). Note. IMF¼ Intrinsic Mode Function. (Color figure
available online.)

FIGURE 5. Eyes open and eyes closed result in 9–12Hz alpha
increase in instantanious amplitude of the Hilbert spectrum.
Note. We revealed the expected alpha decrease in a parietal
region in an eyes-open versus eyes-closed condition. (Color
figure available online.)
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artifacts. A randomized controlled trial is
under way on attention-deficit=hyperactivity
disorder (n¼ 75) using BrainPaint. The prelimi-
nary results (which still include outliers) suggest
that the FFT training group is replicating the
2005 (n¼ 121) randomized controlled trial
results on the Test of Variables of Attention
(Scott, Kaiser, Siderhoff, & Othmer, 2005). Yet
the HHHT group is improving significantly
faster than the FFT-based training group and a
waitlist control group. We had not been captur-
ing the data from the HHHT in a meaningful
form but have begun the process for a new
study.

CONCLUSION

An EEG signal consists of multiple superim-
posed oscillatory components that represent
different underlying physical components of
brain activity. The true nature of this signal is
highly nonlinear and nonstationary, making
linear time-frequency analysis not the ideal
method to analyze brainwaves. EEG signals
can be analyzed with advanced mathematical
methods in order to separate the most essential
components from the rest. HHT is a new
method to construct a sharp and clean time-
frequency spectrum of a nonlinear and nonsta-
tionary signal. It consists of empirical mode
decomposition, which translates the signal
into intrinsic mode functions, and Hilbert trans-
forms, which is then used to obtain the
spectrum. The ability of EMD to decompose
nonlinear signals and retain their intrawave
modulation makes it very suitable for quantitat-
ive EEG analysis.

Extracting the components of the EEG
makes interpreting the signal much easier.
The underlying idea is that a signal is high
oscillations superimposed on low oscillations.
This makes separating the details from the
trend, and the noise from the signal, possible.
For example, artifacts show up in separate IMFs
and can be easily subtracted from the original
signal without disturbing much of the remain-
ing temporal structure. Although the HHT is a
superior digital processing tool, it has room

for improvement, which perhaps could be
covered in a future article.
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