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Connectivity Assessment and Training:
A Partial Directed Coherence Approach

David Joffe, BA

ABSTRACT. Background. The multivariate autoregressive (MVAR) method to generate a
linear model of multichannel signal processes has been employed in many fields but not applied
to the assessment of quantitative electroencephalographic (QEEG) connectivity neurofeedback.
A measure known as Partial Directed Coherence (PDC) derived in the MVAR framework can
offer insensitivity to volume conduction and ability to provide information relating to the direc-
tion of information flow between electrode locations, as a function of frequency during QEEG
assessment and neurofeedback.

Method. This article outlines a variety of reasons why PDC and other related metrics could
play a more fundamental role in elucidating the causal relationships underlying EEG connectiv-
ity than can be provided though a multivariate analysis of coherence alone.

Results. Real-time PDC neurofeedback implementation issues are discussed, technical
challenges are outlined, and research questions are proposed.

Conclusion. MVAR-based methods are an additional means of relating global to local EEG
activity as well as helping to bridge QEEG assessment and neurofeedback protocol generation
and treatment.

KEYWORDS. Coherence, connectivity, multivariate autoregressive model, MVAR, neuro-
feedback, partial directed coherence, QEEG

Connectivity has been defined as ‘‘the
temporal correlation between spatially remote
neurophysiological events’’ (Fingelkurts,
Fingelkurts, & Kahkonen, 2005, p. 828).
One of the most widely employed methods
for correlating activity between pairs of
electroencephalographic (EEG) electrodes is
coherence, defined as ‘‘a correlational mea-
sure, varying between zero and one, of the
variability in phase between two signals over

time. This frequency-specific signal correla-
tion suggests the extent to which two regions
are cooperating on the same task’’ (Frederick,
Timmermann, Russell, & Lubar, 2004).
Brain connectivity can be characterized in
terms of functional or effective connectivity.
‘‘Functional connectivity is defined as the
temporal correlations among neurophysio-
logical events in different neural systems,
whereas effective connectivity is defined

David Joffe is affiliated with Better Physiology Ltd., Boulder, Colorado.
Address correspondence to: David Joffe, BA, Better Physiology Ltd., 4870 Qualla Drive, Boulder, CO 80303 

(E-mail: Dj2242@aol.com).
The author would like to thank Michael Gismondi for his invaluable assistance on both an editorial and 

conceptual level.

Journal of Neurotherapy, Vol. 12(2–3) 2008
Copyright © 2008 ISNR. All rights reserved. 

doi: 10.1080/10874200802402725
111



as the influence that one neural system
exerts over another’’ (Mechelli, Penny, Price,
Gitelman, & Frison, 2002). However, the
distinction between these two terms is often
blurred in practice, and therefore both terms
are used interchangeably in this article.

Within the context of connectivity, neuro-
feedback (NFB) therapists have some gen-
eral principles at their disposal to guide the
conversion of quantitative EEG (QEEG)
assessment information into NFB treatment
protocols and treatment site selection. These
strategies include normalization or ‘‘training
to the Q,’’ analysis of symptoms and their
presumed neurophysiological mechanisms,
use of psychometrics and=or cognitive task
activation QEEG, and numerous other tar-
geting approaches involving combinations
of these.

Training at specific locations will often
exert the greatest effect at those locations;
however, other locations may also be affec-
ted to greater or lesser extents. For example,
up and down regulation of 12 Hz activity
summed between locations C3 and C4 has
been reported to generate widespread chan-
ges in power and coherence across the cortex
as a function of frequency (Delorme &
Makeig, 2003). Egner, Zech, and Gruzelier
(2004) also reported that training specific
frequencies at specific locations on the scalp
resulted in changes at other locations and
frequencies. NFB clinicians are often distin-
guished by their ability to select a training
site and frequency band that will raise or
lower the amplitude of yet another frequency
band at a seemingly unrelated electrode site.

Many coherence relationship pairings
are in reality a function of one or more
influencing sites or sources. These findings
are not unexpected given the level of
interconnectivity that characterizes the
brain. One can reasonably argue that brain
interconnectivity models support the idea
that any QEEG metric computed at any
particular scalp electrode location can also
be affected to some extent by training at
many other locations via a variety of
metrics. The simultaneous or sequential
effects of training one measure such as power,
on another measure such as coherence, are
complex and poorly understood. A shift in

connectivity is not best accounted for in terms
of one limited measure such as power, or
coherence, but rather across all available
measures. In other words, each of the
QEEG measures in common use describes
some limited aspect of a far more complex
pattern of neural connectivity. Given these
complexities, it may be productive at the
outset to perform QEEG assessments and
NFB using fundamental and inclusive
connectivity analysis methods. Such fun-
damental measures may lead to a better
understanding of the effects of training one
particular measure on another, as they will
both then be analyzed in common terms.
In the search for a unified connectiv-
ity framework with an emphasis on integrat-
ing global (involving 19 or more sites) and
local (typically involving 1 to 3 sites) aspects
of connectivity, namely, causality and con-
duction, need to be addressed.

In a review of ‘‘Hudspeth’s Method
of Coherence Analysis,’’ Lewis (2005)
concluded that ‘‘in the conventional QEEG
analysis of coherence values, the detection
of a problematic paired-site value says little
about its source location.’’ In other words,
any two particular scalp electrode locations,
between which coherence is calculated, may
themselves be influenced by one or more
additional electrode sites, thus giving rise
to a misleading estimate of coherence at
one or more frequencies. One approach to
addressing this problem might be to use
partial coherence (Jenkins & Watts, 1969)
to supplement current coherence metrics.
Partial coherence ‘‘partials out’’ the contri-
bution of any other locations, which may
contribute to the shared activity measured
between any two locations. The coher-
ence remaining would then be the activity
between the two locations that could not be
accounted for by the influence of any other
locations. However partial coherence alone
still does not address the problem of causal-
ity because it cannot provide information
relating to the direction of information flow.
Brain networks have been described as cau-
sal in the sense that information flows or is
actively transmitted from one location to
another in an organized fashion (Sporns,
2003) rather than simultaneously from each
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location to every other. The flow of brain
network information can be characterized
in terms of EEG time series. Specifically,
Weiner (1956) introduced the idea of causal-
ity in terms of predicting one time series
from another.

NFB protocols do not currently incorpo-
rate causal information in an explicit
fashion and the lack of causal information
may make certain QEEG derived measures
and training results hard to interpret. For
example, if a ‘‘third’’ site is in fact driving
the coherence or correlated relationship
between two target sites, then clinicians
may be chasing the effects rather than the
causes of the problems they are attempting
to remediate. Generally it is left up to the
experienced practitioner to piece together
the puzzle of global connectivity comprised
of the interaction between all possible pairs
of electrode sites. Although some NFB prac-
titioners have been turning to functional
neuropsychological testing and cognitive
task-activated QEEG assessments to address
this need (e.g., Thornton & Carmody, 2005),
the manner in which a NFB clinician reduces
interpretive complexity, and isolates key
training variables in the neural function
under investigation, often relates more to
his or her own implicit causal reasoning than
any formal paradigm or method of analysis.

Electrical transmission in the brain is
dependent upon volume conduction and
network connectivity. Volume conduction
involves the passive transmission of electrical
charge through the ionic medium of the
brain, whereas network connectivity requires
the active transmission, possible modifica-
tion, and then retransmission of electrical
signals over neuronal pathways. Volume
conduction is virtually instantaneous and
cannot account for the communication
delays involved in network information
transfer (Thatcher, Biver, & North, 2007).
Although NFB training involves network
connectivity, there is no evidence that cor-
tical volume conduction can be changed,
nor does it have any reported diagnostic
value. However, volume conduction can
act as a confounding variable in QEEG
analysis by biasing various QEEG derived
parameters, such as coherence (Barry,

Clarke, McCarthy, & Selikowitz, 2005).
Srinivasan, Winter, Ding, and Nunez
(2007) reported that across all frequencies,
EEG coherence can be elevated by volume
conduction, including electrodes separated
by less than 10 cm and more than 20 cm.
They suggested the use of surface Laplacian
techniques to reduce the effects of volume
conduction on coherence.

Phase is intrinsically involved in the com-
putation of coherence, and this lead or lag
between any two measured EEG signals is
readily available (Thatcher et al., 2007).
Because volume conduction takes place
almost instantaneously, any two signals that
are out of phase, or that lead or lag each
other, cannot be the result of volume con-
duction. Thus, volume conduction implies
almost no phase difference. Ideally, rather
than interpretation of coherence in the con-
text of phase, it would be desirable for the
algorithms involved in any unifying connec-
tivity framework to suppress the effects of
volume conduction. It is important not to
confuse ‘‘zero lag links’’ or ‘‘high phase
synchronization’’ or ‘‘nonlocal synchroniza-
tion’’ with the instantaneous zero phase
angle indicative of volume conduction.
Zero lag cortical oscillations associated
with coherent gamma activity (Knoblauch
& Sommer, 2004) and alpha phase
synchrony (Hebert, Lehmann, Tan, Travis,
& Arenander, 2005) have been reported.
Although the mechanisms postulated for
this synchronization at a distance are com-
plex, they involve not volume conduction
but rather the simultaneous driving of two
or more neural networks by one or more
additional neural networks, or alternatively
the emergent behavior of reciprocally
connected networks (Amari, Nakahara,
Wu, & Sakai, 2003).

To sum up, any practical integration of
global multichannel QEEG assessment with
local NFB in the context of connectivity
would ideally involve some kind of unified
signal processing framework that would
allow the NFB practitioner to relate global
and local information; be relatively insensi-
tive to volume conduction; capture the
causality (or predicted composition and
direction of certain EEG measures), which
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is an intrinsic quality of brain networks; and
scale naturally to any number, or scalp den-
sity, of recording electrodes. The QEEG ana-
lysis NeuroRep (Hudspeth, 1999) was
designed to analyze ‘‘beyond the pairwise
coherence comparisons and look at multi-
variate relationship patterns in the brain in
order to determine the direction of the infor-
mation-processing problem ‘‘flow’’ as well as
the system of sites involved with a given
problem’’ (Gismondi, 2007, p. 35). However,
this article proposes a complementary multi-
variate approach, which although differing
in certain key aspects also addresses the
issue of directional EEG connectivity. This
multivariate approach, although widely
utilized in many other fields, has not yet
apparently found widespread application in
QEEG assessment relating to NFB.

THE MULTIVARIATE
AUTOREGRESSIVE MODEL

If in the past, samples of an EEG channel
A could somehow predict or estimate some
portion of the current sample of an EEG
channel B, then A could be influencing the
changes of B over time, assuming there were
no other channels influencing both A and B
in a similar manner (Granger, 1969). By the
definition of this influence, the use of past
samples in time would not effectively model
the portion of B caused by instantaneous
volume conduction from A, for the simple
reason that the current sample of channel
A would not be included in the estimation
process. Such a process or model would be
largely insensitive to volume conduction. A
significant portion of the current sample of
the EEG measured at any location can in-
deed be predicted or estimated from a linear
weighted combination of past samples mea-
sured at that same location (Rappelsberger
& Petsche, 1975) or from past samples at
another location. This is known mathemati-
cally as an autoregressive (AR) process. The
AR process entails the summation of appro-
priately weighted samples of a signal’s past
activity to predict a significant portion of the
same (or another) signal’s current activity
(Marple, 1980). The EEG is therefore

considered to be an example of an AR pro-
cess, or at least possess strong AR compo-
nents. In the case of the EEG, between
four and eight past samples are usually suf-
ficient (Vaz, De Oliveira, & Principe, 1987)
to generate a fairly accurate prediction of
its current sample.

The efficiency of modeling the EEG using
linear AR techniques does not imply that the
brain itself operates according to primarily
linear dynamic principles or that nonlinear
techniques cannot be effective. However,
although many nonlinear information flow
analysis techniques have been applied to
the EEG (see Natarajan, 2004), it has been
suggested that the EEG can most parsimo-
niously be modeled as a linear process,
except for certain types of epileptic seizures
(Kaminski, 2005). Astolfi et al. (2005) noted
that ‘‘linear measures . . . afford a rapid and
straightforward characterization of func-
tional connectivity’’ (p. 155).

The number of past samples required for
an accurate estimate of the current EEG
sample is referred to as the order of the pro-
cess, and the weighting factors applied to the
past samples are known as the autoregressive
coefficients. Both the order and the value of
the coefficients of the AR process may
change as the raw EEG waveform and its
spectral representation evolves over time
as a function of changing state. The estima-
tion of the optimal AR coefficients for any
given order and particular EEG time series
can be accomplished using many different
algorithms, each with its own particular
strengths and weaknesses involving trade-
offs relating to complexity, speed of compu-
tation, accuracy, sensitivity, and stability. In
addition, the EEG spectrums generated
from AR coefficients have an improved
frequency resolution (Marple, 1987) when
compared to the Fourier transform com-
monly used for QEEG analysis and NFB.

Because the brain is so densely inter-
connected, it is usually possible to predict a
portion of the current activity measured at
some scalp location A from past values
measured at one or more additional scalp
electrode locations B, C, D, and so on (Hesse,
Moller, Arnold, & Schack, 2003). When
taken as a whole then, a complete description
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of the linear causal relationships between all
of the interacting locations can be provided
if they are analyzed simultaneously by what
is known as a multivariate autoregres-
sive (MVAR) model (Kus, Kaminski, &
Blinowska, 2004). Simulations have con-
firmed that if all of the signal source informa-
tion is present in the set of locations measured,
then the resulting MVAR process will cor-
rectly sort out the linear influences between
all of the locations (Kaminski, 2005).

Honey, Kotter, Breakspear, and Sporns
(2007) stated that ‘‘functional networks
recovered from long windows of neural activ-
ity (minutes) largely overlap with the under-
lying structural network, and as a result,
hubs in these long-run functional networks
correspond to structural hubs.’’ Con-
sequently it is not unreasonable to hypothe-
size that for any block of EEG of sufficient
duration, a set of AR coefficients can be com-
puted characterizing the causal or directional
relationship between every pair of measured
scalp electrode locations. This would reflect
to some extent the underlying anatomical
structure-function relationships as well.
Therefore, even though the EEG is nonsta-
tionary (i.e., constantly changing) the under-
lying pattern of connectivity will be reflected
in the MVAR coefficients (Astolfi et al.,
2007). However, the fundamental question
pertaining to the relationship between corti-
cal and scalp activity must still be addressed.

The EEG signal measured on the scalp is a
distorted version of the signal present on the
surface of the cortex (Freeman, Holmes,
Burke, & Vanhatalo, 2003) because of the
presence of intervening anatomical struc-
tures between the cortex and the scalp and
certain electrical properties of the various
structures that tend to ‘‘smear’’ out the
electrical patterns as well as filter out higher
frequency components. Information present
at each scalp EEG electrode site is ‘‘a mix-
ture of local, regional, and global sources’’
(Srinivasan, 2006). For these and other rea-
sons, Pascual-Marqui (2007) stated, ‘‘This
should be taken into account when interpret-
ing the results of many publications with
wire-diagrams based on significant connec-
tions between scalp electrode time series: these
extracranial-based ‘wires’ do not necessarily

correspond to ‘wires’ connecting the under-
lying cortices’’ (p. 6). However, the literature
suggests that given a sufficiently high den-
sity of scalp electrodes, reasonably accurate
estimates of cortical activity using MVAR
methods (Astolfi, 2005) can be achieved.

Therefore, if the goal is to characterize elec-
trocortical dynamics and generate neurologi-
cally plausible MVAR results, then the issue
comes down to what spatial resolution (num-
ber and density of scalp electrodes), with or
without EEG localization methods, is required
to generate a reasonably accurate estimate of
underlying electrocortical information flow
within the frequency band range of interest
based on scalp measurements. This will most
likely require more than the standard 19 Inter-
national 10–20 electrode montage currently
used for both assessment and treatment in
the neurofeedback context. The electrical
activity measured on the scalp is a distorted
representation of the underlying cortical activ-
ity, therefore the rationale underlying the
application of MVAR methodology to 19-
channel EEG scalp data is not an attempt to
accurately characterize the underlying cortical
electrodynamics but rather to help resolve
ambiguities inherent in classical scalp based
coherence measurements while indicating the
directional flow of the distorted cortical
dynamics present on the scalp.

RESEARCH

There is a small but growing MVAR=
EEG literature. For example, EEG event
related potentials were successfully subjected
to MVAR analysis (Vasios, Matsopoulos,
Nikita, & Uzunoglu, 2004). Schloegl (2006)
characterized the goal of applying MVAR
techniques to evoked potentials as being
‘‘to uncover the transient cooperation
between different brain sites’’ (p. 159). A
version of the MVAR-based directed trans-
fer function, the short time directed transfer
function, has been developed for analysis of
rapidly changing EVP=ERP dynamics
(Kaminski, Zygierewicz, Kus, & Crone,
2005). Schloegl, Trujillo-Barreto, Muler,
and Gruber (2007) reported that the PDC
detected an augmentation of induced EEG
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gamma-band responses to familiar objects.
Another recent MVAR application to EEG
analysis by this author involved the gen-
eration of MVAR matrices associated
with 19-channel EEG collected during base-
line and Ayahuasca drug induced states
(Echenhofer, Wynia, & Joffe, 2007). Unique
directional information flow patterns were
reported, which discriminated baseline from
Ayahuasca conditions.

METHODOLOGY

The MVAR coefficients characterizing
the linear causal relationships between all
of the measured scalp electrode locations
can be assembled into one matrix (Kaminski,
2005) where the information at each matrix
location corresponding to row I and column
J represents the degree of influence of scalp
location J on location I, according to the
conventional notation. However, the MVAR
EEG modeling process takes place in the
time domain, whereas most QEEG assess-
ment and NFB is performed in the frequency
domain. Fortunately, the time domain
influences between all locations can
be transformed into the frequency domain
by computing the Fourier transform of
the MVAR coefficient matrix, and thus the
influence of every location on every other
can be calculated as a function of frequency
as well (Kaminski, 2005). The frequency
transformed MVAR coefficients can again
be organized in the form of a matrix, in
which the information at each matrix
location corresponding to row I and column
J now represents the influence of location J
on location I as a function of frequency.

A normalized version of this frequency
domain matrix can be defined. It is known
as the partial directed coherence or PDC
matrix (Kus et al., 2004). The magnitude of
every element of each spectrum in the PDC
matrix ranges from between 0 to 1, similar
to coherence. However, the PDC differs
from classical coherence in three important
respects. First, the PDC between locations
A and B is not necessarily symmetric. This
means that the direction and amount of
information flow between locations A and

B at each frequency can be specified and that
feedback, or bidirectional coupling influ-
ences, can be detected (Supp, Schloegl,
Trujillo-Barreto, Muller, & Gruber, 2007).
Second, because the PDC is a partial
measure, it reflects the activity between two
locations A and B at each frequency minus
the influence of any other additional
locations at that frequency. Third, the PDC
can differentiate between direct and indirect
causality (Astolfi et al., 2007). If location A
influences location B at a particular fre-
quency, and location B influences location
C at the same frequency, then location A will
not be characterized as directly influencing
location C at that particular frequency,
unless there truly exists a direct casual
influence from A to C as well. Supp et al.
(2007) described how ‘‘the multivariate
PDC approach measures how several posi-
tions are ‘effectively’ connected (i.e. exclu-
sively revealing direct connections by
correcting for indirect influences) rather than
merely describing pair-wise synchronicity’’
(p. 2). However this is not the end of the
story as additional MVAR frequency
domain measures (e.g., the directed transfer
function; Kaminski & Blinowska, 1991) can
be computed and used to characterize EEG
information flow as well.

In summary, raw multichannel EEG can
be modeled by an MVAR process, the co-
efficients of which are then converted into
the frequency domain. PDC as a function
of frequency can then be derived from the
frequency domain representation of the
MVAR process. Through both simulation
and analysis of experimental data, Astolfi
et al. (2007) characterized the performance
of MVAR measures such as the PDC by
establishing maximum error bounds for
these metrics in multichannel EEG data
blocks of varying lengths and signal-to-noise
ratios. These results support the use of
MVAR techniques for QEEG analysis.

Thus, the MVAR derived metric, PDC,
can provide a unifying framework that meets
the criteria just outlined, and in a manner
that better reveals connectivity patterns
while minimizing the contributions of vol-
ume conduction. In addition, zero lag nonlo-
cal synchronization would still be modeled
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as well as the influence of additional elec-
trode locations on the coherence computed
between pairs of electrodes.

The author investigated PDC perfor-
mance by processing numerous raw 19-
channel EEG data files and noted a signifi-
cant global reduction of the PDC at many
frequencies between most pairs of electrodes,
when compared to the standard coherence
computed between those same pairs. In
addition, the ‘‘shape’’ of the PDC frequ-
ency spectrum, as compared to the coherence
frequency spectrum between any pair of
scalp electrode sites often differed signifi-
cantly as well. This strongly suggests that
current NFB training methods derived from
classical coherence assessments may not be
based on the most accurate global dynamics
picture available.

According to Thatcher et al. (2007), ‘‘con-
nectivity is defined as the magnitude of cou-
pling between different electrical energies
recorded from different locations of the
brain independent of volume conduction’’
(p. 6). Therefore, the PDC MVAR measure
would appear to be ideally suited for connec-
tivity analysis. The PDC has been discussed in
the context of off-line assessment, but it may
be possible to generate the PDC in real time.

Multivariate Feedback

Adaptive filters are widely utilized
throughout the world of physiological signal
processing and play explicit or implicit roles
in all modern NFB implementations.
Adaptive filters are designed to automati-
cally minimize the difference between their
predictions and some target signal(s). This
is accomplished by feeding back the differ-
ence (or errors) between the prediction(s)
and the actual target value(s) in such a man-
ner as to improve the adaptive filter’s predic-
tions in the future. From an algorithmic
perspective, this involves the use of one or
more learning rules (Wang, Manry, &
Schiano, 2000). Although different algo-
rithms are designed to converge according
to different schemes, given sufficient time a
well-designed adaptive filter will converge to
the best estimates possible, and in a stable

manner. This resembles the process of NFB
itself, which involves a continuous adaptation
or error correction between the individual’s
internal state as represented by the neurofeed-
back signal and some desired target state.

PDC computations can be accomplished
in real time using adaptive multivariate
autoregression (Schloegl et al., 1997). Adap-
tive multivariate autoregression (AMVAR)
filters also learn through the process of trial
and error previously described. However,
the process of learning in this context in-
volves far more complex rules than the single
channel case, as it takes place in a multi-
channel multivariate environment. Well-con-
structed AMVAR algorithms are also
guaranteed to converge given sufficient time,
assuming the raw EEG data are reasonably
well behaved (i.e., not contaminated with
artifact).

One of the most popular AMVAR filters
that has been applied to both background
EEG and evoked potentials is the Kalman
filter (Tarvainen, 2004). Kalman filters
played an indispensable role in the Apollo
space program by helping astronauts navi-
gate accurately to the moon in spite of the
noisy nature of their observations (Cipra,
1993). Kalman and related filters work their
magic by building accurate and constantly
updated models of an incoming signal. In
the case of Apollo, the signal consisted of
measurements of the spacecraft’s trajectory.
In a similar manner, the Kalman class of
adaptive filters builds a constantly updated
model of the underlying multivariate multi-
channel autoregressive process which can
be conceptualized as generating the EEG
data trajectory. The inherent robustness of
Kalman type filters in noisy real-time EEG
settings (Dharwarkar, 2005) may be espe-
cially helpful in NFB applications where
the acquired EEG is often contaminated
by various kinds of artifact. The AMVAR
filter generates a constantly updated (on a
sample-by-sample basis) multivariate multi-
channel AR matrix, which can then be
transformed into the PDC matrix using
methods previously outlined in conjunc-
tion with the non-realtime MVAR case.
However, great care must be taken when
implementing AMVAR algorithms because
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of the nonstationary nature of the EEG.
Nonstationarity, in this context, means
that the time domain EEG, its frequency
representation, and all the interchannel
relationships in both of these domains tend
to change often and abruptly without
warning (Fingelkurts, 1998). Therefore
AMVAR filters must be designed to bal-
ance the opposing necessities of rapidly
tracking EEG transitions while maintain-
ing sufficient inertia to provide stable and
accurate NFB, and in a timely manner so
as to satisfy the temporal constraints of
classical conditioning and deconditioning
(i.e., disentrainment) paradigms.

Only a relatively few enterprising neuro-
therapists perform full 19-channel hookups
during NFB on a routine basis, although this
practice is growing in popularity. Full-cap
EEG hookups during NFB allow for both
the rapid selection of different electrode
locations required by various neurofeed-
back protocols as well as the acquisition of
19-channel EEG data for pre-post or simul-
taneous assessment purposes. Research
software developed by the author in the
mid-1990s supported the provision of NFB
while 19-channel raw data were acquired in
the background. This allowed for the
offline characterization of global EEG
effects associated with NFB training
protocols targeted to specific locations. More
recently Ibric, Dragomirescu, and Hudspeth
(in press) also utilized full-cap montages
to characterize real-time changes in connec-
tivities during NFB. However, and to the
best of the author’s knowledge, EEG
NFB involving all 19 channels simulta-
neously is currently implemented only
during sLORETA (Pascual-Marqui, 2002)
feedback, as provided on a number of
commercial brain mapping and NFB sys-
tems, as full-cap data are required to generate
either real-time or off-line LORETA based
estimates of cortical activity (Congedo,
Lubar, & Joffe, 2004).

In most cases, a minimum of 19 channels
will be required to generate useful offline
or real-time MVAR estimates. Using signifi-
cantly fewer than 19 channels to generate
AMVAR NFB for one or more target loca-
tions means that some real scalp ‘‘sources’’

may be ignored, potentially resulting in
erroneous estimations of cause and effect
(Eichler, 2005). Still, various electrode loca-
tion influences can be largely sorted out
and identified by MVAR or AMVAR based
techniques if a sufficient number of channels
are available (Eichler, 2006).

However, there may be situations where a
19-channel full-cap hookup is not required
for the implementation of PDC-based NFB
algorithms. For example, if a NFB protocol
involves the measurement of the PDC
between locations C3 and C4, and the con-
tributing sources of information flow in the
desired frequency band(s) are determined
during the assessment phase to be largely
restricted to only a few locations in addi-
tion to C3 and C4, it may be possible to
implement a reasonably accurate AMVAR
PDC algorithm using fewer than 19 chan-
nels. This example is predicated upon the
assumption that the global EEG dynamics
during the NFB phase will remain similar
to those characterized during assessment.
To verify the truth of this assumption
it may be advisable to perform full-cap
assessments periodically throughout the
training phase, if less than a full-cap 19
location montage is utilized for PDC
neurofeedback.

With the advent of newer 32 (and above)
channel brain mapping and feedback
systems, MVAR-based methods such as the
PDC applied to scalp EEG will increase in
accuracy relative to the underlying electro-
cortical dynamics. Still, 19-channel PDC
applied in the context of NFB will present
significant challenges to the programmer
and=or systems designer because the com-
putational overhead involved is significant.
Implementing robust real-time PDC will
require a level of signal-processing compu-
tation not previously encountered in the
NFB setting. This will present difficult (but
motivating to those so inclined) sets of
trade-offs and compromises. The problem
is ‘‘nontrivial,’’ as the engineering expression
goes; however, even on a modern PC run-
ning at a GHz clock speed, it is by no means
intractable. The clinical results may very well
justify efforts to develop suitable real-time
PDC neurofeedback algorithms. Assuming
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real-time PDC implementation challenges
can ultimately be overcome, it could be pos-
sible to train individuals using the PDC or
any other MVAR-derived metric applied to
any location or combination of locations,
as is currently the practice with cohe-
rence, power, and asymmetry. In addition,
Z-score-based PDC training, as well as other
MVAR-derived metrics could also be
implemented using MVAR Z-score values
generated from the raw data supporting
existing normative QEEG databases.

MVAR, AMVAR and Source Localization

All of the MVAR=AMVAR-based tech-
niques, such as the PDC, can in theory be
used to characterize cortical as well as scalp-
based connectivity. Specifically, MVAR
algorithms are applied to the EEG time
series produced in each cortical region of
interest by the localization methods. How-
ever, EEG localization techniques, as with
all forms of EEG signal processing, involve
performance trade-offs. MVAR models
have been combined with EEG source locali-
zation methods in offline implementations,
resulting in the generation of estimates of
directional influence between cortical depth
locations. Unfortunately, cross-talk between
cortical regions is an unavoidable side effect
of many of the EEG source localization
methods currently in use. For example, prior
to the application of MVAR, Hui and Leahy
(2006) were required to employ a technique
known as beamforming to eliminate spur-
ious sources of communication between
cortical regions, generated by their EEG
localization methods.

AMVAR algorithms could also be inte-
grated with real-time LORETA (Congedo
et al., 2004) as well as other EEG inverse
solutions such as subspace projection filter-
ing combined with sLORETA (Congedo,
2006). This would impose additional levels
of computational complexity and physical
assumptions. With the addition of AMVAR
techniques, the future of multichannel NFB
could conceivably involve training specific
connectivity patterns between cortical brain
regions at depth, thus bringing the practice

of NFB more closely into line with emerg-
ing neurophysiological models generated
by other neuroimaging modalities such as
fMRI, SPECT, or PET. However, this will
most likely involve far denser scalp electrode
arrays than the common 19-channel mon-
tage in current use. Once again, with the
availability and cost of 32-channel QEEG
mapping systems already within the grasp
of the working neurotherapist, and such
systems destined to become even more
affordable as clinical applications mandate
their use, the union of MVAR and localiza-
tion techniques could eventually become an
accepted standard of practice.

Clinical Research Questions

Following are a few of the many interest-
ing connectivity related questions that might
be fruitfully addressed using MVAR=
AMVAR-based methods, and that possibly
may lead to more optimal QEEG assessment
and NFB training protocols:

1. If a QEEG metric is up or down trained
at a particular location A, and A is
influenced by locations B and C, or A
influences B and C, will the metric
measured at B and C also change propor-
tionally to the influence?

2. If a QEEG metric is up or down trained at
a particular location A but is influenced
by locations B and C, will it take less time
to achieve the training goal if locations B
and C are trained directly or if A, B and
C are trained simultaneously?

3. If a QEEG metric is up or down trained
at a particular location A over some
frequency band, and location B influences
A over part of the band, and location C
influences A over the rest of the band, will
it be more efficient to train at B and C
over different parts of the band simulta-
neously, than to train directly at A over
the whole band?

4. AMVAR algorithms can be modified to
compute the correlation between pairs of
directional influences at the same or dif-
ferent frequencies or bands. Might there
be a clinical utility in learning to use the

Scientific Articles 119



directed influence of a particular fre-
quency or band from location A,
to modify the directed influence(s) in the
same or different band from location B?
Can the brain adapt to and work with
arbitrarily complex feedback algorithms?

5. Clinicians have reported that up and down
training power followed by coherence
training (or vice versa) is an effective way
to treat various disorders. For example,
one study (Walker, 2006) determined that
power followed by coherence training was
effective for reducing the frequency of
seizures. To analyze the effect of training
one modality, such as power, on the subse-
quent training of a modality such as coher-
ence, might it be more productive to ask
how the information flows underlying the
observed power patterns relate to the
information flows influencing the observed
coherence patterns, or the reverse, thus
reformulating the problem of sequencing
or combining NFB protocols in terms of
a least common denominator?

6. Given that ‘‘significant fluctuations in
functional topology are observed across
the sequence of networks recovered from
consecutive shorter (seconds) time win-
dows’’ (Honey et al., 2007, p. 10240),
what are the optimal EEG data analysis
lengths that should be employed to most
effectively relate MVAR QEEG assess-
ment to AMVAR-based NFB training?

SUMMARY

This article has shown that additional
connectivity and information flow insights
can be extracted during multichannel QEEG
assessment using the technique of multi-
variate autoregressive analysis or MVAR
to generate metrics such as the partial direc-
ted coherence or PDC. This technique can
be implemented in real-time for NFB and
provides a means of relating global EEG
activity to local activity in both offline
assessment and real-time training settings.
MVAR could be integrated with other meth-
ods of analyzing global EEG connectivity,

such as those employed by various EEG
localization algorithms.

As practitioners and researchers attempt
to categorize different connectivity assess-
ment systems and begin to implement preli-
minary versions of these tools and work
with clients, they will need to clarify how
clinical decisions are made. This will include
what connectivity links are to be trained, in
what priority or sequence, and what connec-
tivity measures are ignored. It can be argued
that even now QEEG assessment reports
often present a bewildering array of diffi-
cult-to-interpret connectivity abnormality
information to the clinician. The proposed
MVAR=AMVAR-based PDC approach can
assist the NFB clinician to assimilate this
information and fashion an effective treat-
ment plan.
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