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TECHNICAL NOTES

The purpose of the “Technical Notes” section is to provide detailed
technical descriptions and illustrations of software, hardware, and
techniques within our technically sophisticated field. This section does
not have the depth of review that scientific research articles require,
though submissions are reviewed for technical accuracy. This column
will also contain authors’ opinions and value judgments. The personal
opinions expressed in the column are exactly that, the opinions and ex-
periences belonging to the individual authors.

Mixed General Linear Model Analysis
of Quantitative Electroencephalographic

(qEEG) Data
Donald R. Bars, PhD

Christian Schindler, PhD

ABSTRACT. This paper describes a mixed general linear analysis of
the quantitative electroencephalogram (qEEG). The modeling is similar
to regression, which builds a regression or ‘best-fit’ model for the data
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structure but, in addition, provides for correlations between observa-
tions. A mixed linear model states that data consists of two parts: fixed 
effects and random effects. Fixed effects determine the expected values 
of the observations, while random effects account for the stochastic de-
viations from these expected values both between and within individu-
als. Since errors are independent between subjects, the deviations from 
the expected values may also be modeled using a repeated measures ap-
proach. The term ‘repeated measures’ in this model refers to data with 
multiple observations from one specific source. It is reasonable to as-
sume that these observations from the same source are correlated, even if 
only slightly, in some measurable way. Consequently, statistical analy-
sis of repeated measures data gives a more accurate prediction capability 
when the issue of covariation between these measures is addressed.

With mixed model methodology now available (e.g., the mixed pro-
cedure [Mixed PROC] of the SAS® system), the covariance structure 
can be incorporated into the statistical model. Disregarding potential 
random effects not specific to single individuals and absorbing potential 
within-subject random effects into the covariance matrix allows one to 
work with a simplified model.

The use of a mixed procedure and its method of modeling the data 
structure appear to provide an accurate and objective method of analysis 
resulting in quantifiable equations for testing predictions. Essentially, 
this method allows the physiological pattern of each individual in the 
study, not related to any other variable, to be represented and accounted 
for in the model. Several comparative examples will be used to highlight 
the information that can be hidden in data structures depending on the 
type of statistical analysis used. 

Copyright © 2004 ISNR. All rights reserved. 

KEYWORDS. General linear model (GLM), covariance, Fourier, quan-
titative electroencephalography

This paper describes the application of a statistical method for the
analysis of the quantitative information created by digitizing an electro-
encephalogram (qEEG). The modeling is similar to regression, which
builds a regression or ‘best-fit’ model for the data structure, but, in addi-
tion, provides for correlations between observations. A linear mixed
model states that data consists of two parts, fixed effects and random ef-
fects. The fixed effects determine the expected values of the observa-
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tions (e.g., the amount of activity in a specific brain frequency band for
a specific electrode location) while random effects account for random
deviations from these expected values both between and within individ-
uals. If errors are independent between subjects, the deviations from the
expected values may also be modeled using a repeated measures ap-
proach (i.e., by modeling the covariance structure of residuals). The
term ‘repeated measures’ in this model refers to data with multiple ob-
servations from one specific source (i.e., the data gathered simulta-
neously from a collection of electrode sites on one individual). It is
reasonable to assume that these observations from the same individual
are correlated, even if only slightly, in some measurable way. Conse-
quently, statistical analysis of repeated measures data gives a more
accurate prediction capability when the issue of covariation between
these measures is addressed.

With advances in technology and the mixed model methodology now
available (e.g., the Mixed Procedure [MIXED PROC] of the SAS® sys-
tem; SAS OnlineDoc™, Version 8), the covariance structure can more
easily be incorporated into the statistical model (Cnaan, Laird, & Slasor,
1997; Koch, Tangen, Jung, & Amara, 1998; Littell, Pendergast, &
Natarajan, 2000). As Littell et al. suggested in 2000, “Ignoring co-
variance structure may result in erroneous inference, and avoiding it
may result in inefficient inference.” The examples presented in this pa-
per will highlight what can happen when not accounting for individual
covariance. Hopefully, by the time you finish this paper you will under-
stand the model and be able to utilize the method, primarily by a simple
change in variable names, with any clinical questions that arise in your
practice.

In typical comparative qEEG experiments subjects are assigned to
different classes with the dependent variable being the subject’s mean
(y1) of data across k different electrode sites and 1 different frequency
band. Mathematically speaking, the variable y1 is a vector with k � 1
elements per subject. Usually the most important independent variable
modeled concerns differences between groups though many times there
are multiple independent variables that must be considered. Random ef-
fects result from variation between the subjects in the groups modeled
by repeated measures of data recorded from different electrode sites and
evaluated in frequencies. While repeated measures can be accounted for
in the general linear model (GLM), the covariance of the data within
each individual is not modeled.

With the mixed procedure, the fact that measures from the same per-
son at different electrodes are correlated is taken into consideration with
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a covariance matrix and observations on different subjects are assumed
to be independent. This is of importance because measures taken on the
skull surface can be highly correlated or not, depending on the specific
processes occurring in the “brain” under the electrode locations at the
time of recording (Bullock et al., 2000; Thatcher, 2001). Since individ-
ual subjects are considered in a univariate analysis, group becomes an-
other fixed effect along with frequency band and electrode location.

The general formulation of such a model is:

Y = Xb + Zg + e

where X is a matrix whose columns represent the predictor variables as-
sociated with the fixed effects, b is the vector of fixed effect parameters,
Z is a matrix whose columns represent the predictor variables associ-
ated with random effects, g is the vector of random effects assumed to
be randomly generated from a multivariate normal distribution, and b is
the random vector of the errors. This equation represents the data vector
for the mean where E(g) = 0, E(e) = 0, V(g) = G and V(e) = R. Therefore
E(Y) = Xb and by assuming that g and e are independent, the covariance
of Y is modeled as:

V(Y) = ZGZ� + R

In our approach we disregarded potential random effects that would
not be specific to single individuals. Thus, by absorbing potential
within-subject random effects into the covariance matrix R, we can
work with the simplified model

V(Y) = R

As a complementary approach we used a cross-validation algorithm
based on the jackknife principle (i.e., it fits the model under consider-
ation to the n data sets obtained by alternatively excluding each of the n
subjects). For each of these n models, the sum of the squared prediction
errors across sites and frequency bands at the omitted subject is com-
puted. The mean of these sums across the n models (i.e., the mean
multivariate prediction error) was considered as a measure of the misfit
of the underlying model. According to the cross-validation ‘philoso-
phy,’ the best model is the one with the lowest mean square error
(MSE). A model containing too many variables or generally too many
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degrees of freedom tends to over fit the underlying data, thereby picking
up features that are specific to the data set from which it has been de-
rived. Since these features can not be generalized, such a model will not
perform very well on new data. The opposite is a model that is too
coarse and does not describe the general features of the data well
enough. In both cases the MSE obtained by cross-validation would be
larger than one would want. On the other hand, the model minimizing
the MSE generally has the advantage of representing a good compro-
mise between these two extremes, in that it neither over nor under fits
the underlying data. Therefore it captures the essential features of the
data and tends to perform better in future predictions.

The amplitude and power models considered were of the form:

E(Y|site) = (1+group+group2)*(1+site+site2)1

where group and site are ordinal variables with 5 and 4 levels, respec-
tively.

The right side of the equation was given in symbolic notation (i.e.,
pairwise multiplication of terms within the two parentheses provides
the predictor terms for the model), without their regression coefficients.
In this model, containing eight fixed effect parameters and four obser-
vations per subject (one for each of the four sites), the R matrix is
block-diagonal with blocks of dimension four.

For coherence data, a model of the following form was assumed for
each frequency band:

E(Y|sitea,siteb) = (1+group+group2)*(1+sitea+sitea2+siteb+siteb2+site*siteb)

where group, sitea and siteb represent ordinal variables with 5, 4 and 4
levels, respectively.

Again, symbolic notation is used to define the predictor terms of the
model. In this model, containing 17 fixed effect parameters and 16 ob-
servations per subject (one for each pair of sites from the left and right
hemisphere), the R matrix is block-diagonal with blocks of dimension
16. The coherence data of these 16 pairs were considered to be a func-
tion of two variables, the left hemispheric site (sitea) and the right hemi-
spheric site (siteb). Intra- and interhemisphere coherence data were
examined. A direct inclusion of the band variable into all models over-
charged them; therefore, each band was evaluated separately.

An example using an absolute power data set will be used to show
one way to apply the mixed model to qEEG data in clinical research.
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The data sample is from a small set of five groups of individuals in a
study looking at psychiatric disorders. The analysis used the mean from
eight electrode locations (F3, F4, P3, P4, T5, T6, O1, O2) and 50 fre-
quency bins (0 to 25 hertz in 0.5 intervals). These bins were converted
to seven frequency bands (band); subdelta–0.5 to 1, delta–1 to 3.5,
theta–4 to 7.5, alpha1–7.5 to 10, alpha2–10 to 12.5, beta1–12.5 to 15,
and beta2–15 to 25. Two ordinal variables; group (with values 1 to 5),
site (with values 1 to 4 representing frontal, parietal, temporal and oc-
cipital locations) were considered along with their squares and interac-
tion terms. In this example the power data represents the symmetry
number that results when the right electrode Fourier data is subtracted
from the left (l � r). The activity was converted to a standard power rep-
resentation using ScanTM 4.2 software (Neuroscan Labs). Results from
a GLM (Table 1), a mixed procedure (Table 2), and the MSE from the
cross-validation procedure (Table 3), for band 5 or the 10 to 12.5 Hz al-
pha are presented for comparison and discussion. At this point1 conven-
tional backwards selection would occur using the mean squared error
(MSE) as an additional ‘external’ criterion for the goodness of fit. Ap-
pendix A details the SAS program used to run the GLM, the mixed pro-
cedure and the cross-validation process.

A more refined backwards selection strategy might additionally in-
clude a criterion limiting change in parameter estimates (i.e., a variable
whose omission from the model would cause a change in one of the re-
maining parameters beyond a predefined tolerance band would then be
kept in the model irrespective of its statistical significance).

The first step when evaluating this model for significant variation in
group-specific patterns is to begin with the grpsite variable as this statis-
tic measures differences between groups at different electrode loca-
tions. If this term is significant then the influence of the site variable
depends on the group to which the subject belongs. This allows the
characterizing of group-specific average patterns. The methodology of
mixed models also offers the possibility of estimating individual ran-
dom effects, thereby allowing identification of subjects who strongly
deviate from their group average. In this example there appears to be a
group difference within the individual population that is nonspecific to
the site of the activity. There was a significant grpsite difference in both
analysis methods (see Tables 1 and 2) but the significant chi-square sta-
tistic seen in Null Model Likelihood Ratio Test (NMLRT) with the
mixed procedure indicates the appropriateness of modeling the covariance
structure (The MIXED Procedure). If this statistic is not significant, the
GLM results should be used.
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TABLE 1. GLM~Power Symmetry~Band 5

Dependent Variable: y1
Source DF Squares Sum of

Mean Square
F Value Pr > F

Model 8 0.36800463 0.04600058 1.98 0.0549
Error 115 2.67084299 0.02322472
Corrected Total 123 3.03884762

R-Square Coeff Var Root MSE y1 Mean
0.121100 2539.823 0.152397 0.006000

Parameter Estimate Standard Error t Value Pr > |t|
Intercept �0.5796111604 0.32838349 �1.77 0.0802
Group 0.6260315352 0.29124667 2.15 0.0337
grp2 �0.1028814672 0.0486608 �2.11 0.0367
site 0.5773199036 0.29957828 1.93 0.0564
site2 �0.0975468 0.05897942 �1.65 0.1009
grpsite �0.6155785328 0.26569904 �2.32 0.0223
grpsite2 0.1086477571 0.05230945 2.08 0.04
grp2site 0.0997438742 0.04439237 2.25 0.0266
grp2sit2 �0.0177132003 0.00873974 �2.03 0.045

TABLE 2. Mixed GLM~Power Symmetry~Band 5

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
9 30.26 0.0004

Solution for Fixed Effects
Effect Estimate Standard Error DF t Value Pr > |t|
Intercept �0.4719 0.2493 28 �1.89 0.0687
Group 0.5077 0.2211 28 2.3 0.0293
grp2 �0.08247 0.03694 28 �2.23 0.0337
site 0.4954 0.2782 28 1.78 0.0858
site2 �0.08397 0.05922 28 �1.42 0.1672
grpsite �0.5256 0.2467 28 �2.13 0.042
grpsite2 0.09374 0.05252 28 1.78 0.0851
grp2site 0.08422 0.04122 28 2.04 0.0505
grp2sit2 �0.01514 0.008776 28 �1.73 0.0955

TABLE 3. Cross-Validation~Power Symmetry~Band 5

Mean squared error in cross validation
Analysis Variable: e2

N Mean Std Dev Minimum Maximum
31 0.1025276 0.0761427 0.0136425 0.2813329



The relationship of each individual’s activity is considered to be in-
dependent; therefore; the difference in the significance of the results,
between the GLM and the mixed procedure, implies that there was
enough covariance within each individual’s data set to account for this
change. In this example, the use of a mixed general linear analysis, with
its modeling of the covariance structure from each subject’s data, re-
sulted in a more accurate understanding of the data. Though in this case
it might have seemed to be just a manipulation in or refinement of analy-
sis, which may or may not be relevant to understanding the data, in other
instances the difference could be crucial. Tables 4, 5, and 6 show the re-
sults from the analysis of interhemispheric coherence relationships in
band 3 (4.0-7.5 Hz). From the GLM there appears to be a highly signifi-
cant relationship between the left and right hemispheres but there does
not appear to be group involvement reducing the importance of this
finding. The significant NMLRT indicates the appropriateness of the
mixed procedure and in this case reveals significance in the data that
were obscured in the GLM which missed the unique individual electro-
physiological patterns analyzed by an unstructured covariance matrix.
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TABLE 4. GLM~Interhemisphere Coherence~Band 3

Parameter Estimate Standard
Error

t Value Pr > |t|

Intercept 0.8685211204 0.27490749 3.16 0.0017
Group �0.0066450178 0.24381827 �0.03 0.9783
Sitea �0.2011315623 0.16182495 �1.24 0.2145
Siteb �0.2655712713 0.16182495 �1.64 0.1014
grp2 0.0014740373 0.04073658 0.04 0.9712
sitea2 �0.0051468363 0.02964404 �0.17 0.8622
siteb2 0.007155804 0.02964404 0.24 0.8094
sitasitb 0.0830425769 0.02371523 3.5 0.0005
grpsitea �0.0227375174 0.14352421 �0.16 0.8742
grpsiteb 0.0267065301 0.14352421 0.19 0.8525
grpsita2 0.0126972631 0.0262916 0.48 0.6294
grpsitb2 0.0043052348 0.0262916 0.16 0.87
grsiasib �0.0134738101 0.02103328 �0.64 0.5221
grp2sita 0.0031302375 0.02397968 0.13 0.8962
grp2sitb -0.0048079142 0.02397968 �0.2 0.8412
grp2sia2 -0.0018778629 0.00439274 �0.43 0.6692
grp2sib2 -0.0006365416 0.00439274 �0.14 0.8848
g2siasib 0.0021117926 0.00351419 0.6 0.5482



What does all this mean? The more accurate the model, the more
precise the prediction. Understanding the unique neurophysiological
pieces that produce complex behaviors leads to more efficient interven-
tion strategies. To help do this we create complex statistical models and
then evaluate data sets for the best model that predicts the data. By in-
creasing the complexity of statistical analysis possible, computers have
allowed models to be created that represent many more of the basic
physiological pieces that make up the total information available in a
quantitative electroencephalogram. This modeling of complexity in
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TABLE 5. Mixed GLM~Interhemisphere Coherence~Band 3

Null Model Likelihood Ratio Test:
DF Chi-Square P > ChiSq
135 1035.32 < 0.0001

Solution for Fixed Effects
Effect Estimate Standard

Error
DF t Value Pr > |t|

Intercept 1.1125 0.1055 28 10.54 < 0.0001
Group �0.01433 0.09359 28 �0.15 0.8794
Sitea �0.1382 0.05031 28 �2.75 0.0104
Siteb �0.3117 0.03927 28 �7.94 < 0.0001
grp2 0.002705 0.01564 28 0.17 0.8639
sitea2 �0.02204 0.007748 28 �2.84 0.0082
siteb2 0.009517 0.00633 28 1.50 0.1439
sitasitb 0.06914 0.007816 28 8.85 < 0.0001
grpsitea 0.03569 0.04462 28 0.80 0.4306
grpsiteb 0.05182 0.03483 28 1.49 0.148
grpsita2 �0.00113 0.006872 28 �0.16 0.8705
grpsitb2 �0.0036 0.005614 28 �0.64 0.5262
grsiasib �0.01653 0.006932 28 �2.39 0.0241
grp2sita �0.0056 0.007456 28 �0.75 0.4589
grp2sitb �0.00883 0.00582 28 �1.52 0.1405
grp2sia2 0.00017 0.001148 28 0.15 0.8833
grp2sib2 0.000642 0.000938 28 0.68 0.4993
g2siasib 0.002689 0.001158 28 2.32 0.0278

TABLE 6. Cross-Validation~Interhemisphere Coherence~Band 3

Mean squared error in cross-validation
Analysis Variable: e2

N Mean Std Dev Minimum Maximum
496 0.0234607 0.0367621 1.5483183-9 0.2356986



analysis becomes more and more analogous to modeling the brain’s un-
derlying neurophysiology processes. As data sets become larger, the
ability to classify neurophysiological information will continue to im-
prove. Clinically, being able to predict which individual will exhibit de-
structive negative behavioral patterns and act on them is still in the
future, yet today we can predict some behavioral characteristics and are
intervening clinically either before or when the predicted behavior be-
comes a problem. The use of a mixed procedure and its method of mod-
eling the data structure appears to provide a more accurate and objective
method of analysis which also provides quantifiable equations for test-
ing predictions. Other methods, such as factor and cluster analysis, may
need to be applied as we continue to increase our understanding of what
is represented in the electroencephalogram.

It is hoped that the way the statistical model is presented in this paper
will allow clinicians to be able to easily modify available SAS programs
for use in understanding the data they gather in their daily practices. All
of the SAS programs that are used in this paper are available by e-mail
from the first author at dbars2001@yahoo.com/.
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APPENDIX

FILENAME master Here you need where the data file is located on your computer, e.g.,
‘c:\My Documents\My SAS Files\SASwork\fftpowermaster.txt’;

options nocenter ls=75;
%macro bla;
%let model =  group grp2 site site2 grpsite grpsite2 grp2site grp2sit2;
data master;

infile master dlm=’09’X dsd missover lrecl=1500;

input Fp1 Fp2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T3 T4 T5 T6 Fz Cz Pz ind group cyc &&;
The variables that are in your data set (.txt file) need to be listed here, in the order they are
found in the file.

Fp1  =  log(Fp1);
Fp2  =  log(Fp2);
F3   =  log(F3);
F4   =  log(F4);
C3   =  log(C3);
C4   =  log(C4);
P3   =  log(P3);
P4   =  log(P4);
O1   =  log(O1);
O2   =  log(O2);
F7   =  log(F7);
F8   =  log(F8);
T3   =  log(T3);
T4   =  log(T4);
T5   =  log(T5);
T6   =  log(T6);
Fz   =  log(Fz);
Cz   =  log(Cz);
Pz   =  log(Pz);

proc sort;
by group ind cyc;

proc transpose out=o prefix=y;
var Fp1 Fp2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T3 T4 T5 T6 Fz Cz Pz;
by group ind cyc;

data o; set o;
subdelta=(0.5<=cyc<=1.0);
delta=(1.0<=cyc<=3.5);
theta=(4<=cyc<=7.5);
alpha1=(7.5<cyc<=10);
alpha2=(10<cyc<=12.5);
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beta1=(12.5<cyc<=15);
beta2=(15.5<cyc<=25);

band=subdelta+2*delta+3*theta+4*alpha1+5*alpha2+6*beta1+7*beta2;
if _name_ in (‘F3’ ‘F4’) then site=1;
else if _name_ in (‘P3’ ‘P4’) then site=2;
else if _name_ in (‘T5’ ‘T6’) then site=3;
else if _name_ in (‘O1’ ‘O2’ ) then site=4;

*********** activated for comparison between hemispheres *************;
if _name_ in (‘F3’ ‘P3’ ‘T5’ ‘O1’) then y1=-y1;

*******************************************************************************;

if band=0 then delete;
proc summary nway;

var y1;
class group ind band site;
output out=o2 mean=y1;

data o2; set o2;
bandsite=band*site;
grpband=group*band;
grpsite=group*site;
grpbasit=group*bandsite;
band2=band**2;
site2=site**2;
grpband2=group*band2;
grpsite2=group*site2;
grp2=group**2;
grp2site=grp2*site;
grp2band=grp2*band;
grp2ban2=grp2*band2;
grp2sit2=grp2*site2;
grp2basi=grp2*bandsite;

**********************************************************************;
/* This will set the band for analysis */

**********************************************************************;

if band=5;

**********************************************************************;
/* This will accomplish the glm procedure */

**********************************************************************;
proc glm ;
TITLE ‘ ### GLM ### ’;
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class ind;
model y1 = &model / solution;

**********************************************************************;
/* This will accomplish the mixed procedure */

**********************************************************************;

proc mixed IC;
TITLE ‘ ### Mixed GLM### ’;
class ind;
model y1 = &model / solution;
repeated / type=un subject=ind;

**********************************************************************;
/* This will accomplish the cross-validation procedure */

**********************************************************************;

data t; set o2;
i=ind;

%do i=1% to 31;
data t; set t;

z=y1;
if i=&i then z=.;

%if &i ne 1 %then %do;
data t; set t;
drop pred;

%end;
proc reg data=t noprint;

TITLE ‘ ### Cross-validation ### ’;

model z = &model;
output out=t p=pred;

data t; set t;
if i=&i then e2=(y1-pred)**2;

%end;

%mend bla;
%bla;

proc summary data=t nway;
var e2;
class ind;
output out=s sum=s_e2;

proc means data=s;
var s_e2;
title ‘Mean squared error in cross-validation’;

run;
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