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EEG Connectivity Patterns in Childhood
Sexual Abuse:

A Multivariate Application Considering
Curvature of Brain Space

Lisa M. Black, PhD
William J. Hudspeth, PhD
Alicia L. Townsend, PhD

Eugenia Bodenhamer-Davis, PhD

ABSTRACT. Introduction. A limitation of the bivariate electroencephalogram (EEG) coher-
ence measure is low precision in location specification in anatomical space and functional con-
nectivity. A more powerful use of functional connectivity of distributed brain systems maybe
evaluation of patterns of correlations obtained through the functional connectivity matrix of
Principal Component Analysis. The eigenimages that result from such analysis represent a
descriptive characterization of anatomically distributed changes in the brain. There is little
research exploring the relationship between childhood sexual abuse (CSA) and connectivity pat-
terns in the brain. This study explored the connectivity patterns between 24 high-functioning,
unmedicated adults with a history of CSA and age, gender, and handedness matched high-
functioning adults with no history of CSA.

Method. Resting eyes closed quantitative EEG (QEEG) was recorded from 19 scalp locations
with a linked ears reference from 60 unmedicated adult research participants. The QEEG was
subjected to measures of connectivity for analysis.

Results. A robust analysis of QEEG cortical coherence revealed moderate to large effect sizes
indicating patterns of both increased and decreased connectivity between brain locations, which
differentiated the groups.

Conclusion. The EEG coherence information extended previous work in nonclinical, unme-
dicated adults and suggested CSA impacts cortical function resulting in lateralized differences.
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Statistical methods for preventing small distribution changes from making large changes in
power or probability coverage because of small and nonnormal samples is also discussed.

KEYWORDS. Childhood sexual abuse, EEG coherence, functional connectivity, QEEG,
quantitative EEG

The development of the electroencephalo-
gram (EEG) lead to a better understanding
the functional relationship between areas of
the brain through evaluation of the degree
of similarity between two signals produced
in different regions of the brain. Years ago,
Brazier and Casby (1951) studied the similar-
ity between two EEG signals using a cross-
correlation computation. More recent work
examined measures of EEG cortical coher-
ence between pairs of EEG signals recorded
simultaneously at different scalp locations
to examine human development (Marosi
et al., 1992; Thatcher, 1992; van Ball, van
Beijsterveldt, Molenaar, Boomsma, & de
Geus, 2001), cognitive processing (Harmony
et al., 1993; Reiterer, Hemmelmann,
Rappelsberger, & Berger, 2005; Sauseng,
Klimesch, Schabus, & Doppelmayr, 2005;
Schack, Chen, Mescha, & Witte, 1999;
Thornton, 2003), and psychiatric conditions
and treatment (Clarke et al., 2005; John,
Prichep, Fridman, & Easton, 1988; Knott,
LaBelle, Jones, & Mahoney, 2002; Prichep
& John, 1992; Sritharan, Sergejew, Silberstin,
Egan, & Copolov, 2005; Suffin & Emory,
1995, 1996). Otnes and Enochson (1972)
defined the coherence function at each
frequency as

Coh2
xyðf Þ ¼

jGxyðf Þj2

Gxxðf ÞGyyðf Þ

where Gxy(f) is the cross-spectrum between
the signals x and y and Gxx(f) and Gyy(f)
are autospectrums of the respective signals
x and y, and values are filtered and normal-
ized. Often the correlation function rather
than the coherence function is used to evalu-
ate the similarity between two signals with a
high degree of comparability of results using
either method (Guevara & Corsi-Cabrera,

1996). Coherence can therefore be described
as the accumulation of the squared cross-
correlations of the power=amplitude of
activity between pairwise EEG time series.
Hughes and John (1999) described coherence
as ‘‘a measure of synchronization between
activity in two channels’’ (p. 192). Thus,
coherence can be thought of as the morpho-
logical similarity between two sites in the
brain irrespective of time synchronization,
with a correction for absolute magnitude. It
is reasonable to assume the sites that covary
highly possess high connectivity or are pro-
cessing related cortical=subcortical informa-
tion, as they share a significant number of
neurons whose dynamic interactions occur
within the same time frame. The term func-
tional connectivity has been used when dis-
cussing coherence between spatially distant
sites (Friston, Frith, Liddle, & Frackowiak,
1993). The value of coherence is the ability
to infer activity of intrahemispheric path-
ways (uncinate) and interhemispheric collo-
sal tracts, which connect sites and invisible
to the EEG. Coherence adds substantial clin-
ical value to surface EEG data because it
enables inferences about deeper structures,
like the limbic system.

Although an understanding of pairwise
functional connectivity is certainly interest-
ing, it is limited. One limitation of EEG
coherence is that it is not precise in its speci-
fication of location in anatomical space
because the pairwise comparisons assume a
flat space and provide a flat space estimate.
The description of hypercoherence at an
electrode site is analogous to describing a
person as ‘‘big’’ without specifying height
and width. Although EEG coherence esti-
mates can prove to be quite accurate when
comparing near neighbor sites, the estimates
quickly move toward erroneous conclusions
when comparing more distant sites (Kus,
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Kaminski, & Blinowska, 2004; Liberati,
Cursi, Locatelli, Comi, & Cerutti, 1997).

Kus et al. (2004) utilized simulation proce-
dures to compare different coherence measure-
ments (e.g., Granger causality, directed
transfer function, direct directed transfer func-
tion, bivariate coherence, and partial directed
coherence). The researchers found pairwise
estimates to be incorrect in most cases, when
compared to multichannel estimates. Volume
conduction in the brain can enlarge estimates
of coherence for near neighbor sites but reduce
signal phase differences for sites at larger dis-
tances, which contribute to random errors.
Barry, Clarke, McCarthy, and Selikowitz
(2005) adjusted coherence measures to remove
such random distance effects and found that
systematic interelectrode distance effects still
remained and accounted for greater than
50% of the variance. When the researchers
removed this systematic variance, more accu-
rate coherence estimates were achieved. This
research makes an important contribution to
our understanding that both random and sys-
tematic distance effects contribute to variance
to make pairwise coherence estimates based
on binary models inaccurate.

Because diverse regions of the brain
become activated and work together during
information processing, multivariate models
have been increasingly used in order to
consider all signal components together and
to deal with the variance problems inherent
in bivariate coherence measurements of
the EEG (Anderson, Stolz, & Shamsunder,
1998; Arnold, Miltner, Bauer, & Braun,
1998; Harner, 1990; Harner & Riggio, 1989;
Liberati et al., 1997; Moller, Schack,
Arnold, & Witte, 2001; Nunez et al., 1997;
Valdes-Sosa, 2004). Valdes-Sosa pointed to
multivariate autoregressive time series mod-
els as being limited in the number of time
series they can handle, thus, requiring a priori
region selection, which sacrifices a full spatio-
temporal understanding of the brain data.
This limitation led Valdes-Sosa to specify a
Bayesian spatial-temporal multivariate
autoregressive time series model, which
reduced dimensionality of many computa-
tions through single-value decomposition.

A more powerful use of functional connec-
tivity is the characterization of distributed

brain systems through the evaluation of pat-
terns of correlations. Electrode space must be
corrected for the curvature of space in the
brain, which requires multiple descriptors.
This is obtained through subjecting the func-
tional connectivity matrix to Principal Com-
ponent Analysis. This is a multivariate
estimate that discovers only those variables
critical to the description of the curved space
around which the generators cluster. The
analysis discards unessential variables. The
eigenimages that result from such analysis
represent a descriptive characterization of
anatomically distributed changes in the
brain—mapping anatomy into a functional
space (Hudspeth, 1993). It is analogous to
describing a person in terms of several dimen-
sions (e.g., height, width, and breadth) rather
than in terms of only one dimension. It is pro-
posed that simple mathematical coherence
calculations based on flat space may be useful
with adjacent electrodes, but a more complex
system that accounts for a curved space and
uses multiple estimates is necessary to under-
stand the full spatio-temporal nature of con-
tinuous time series brain data. An analogy
can be drawn from the contrast between
Riemannian (Gallot, Hulin, & Lafontaine,
2004) and non-euclidian geometry. Although
non-euclidian geometry was certainly useful
in the description of smaller systems,
Riemannian geometry with N spatial dimen-
sions was necessary for a more accurate
understanding of the universe.

Between 1985 and 1988, Hudspeth (1993)
and his students carried out detailed analyses
related to the underlying structure of the
human EEG. They discovered a basic princi-
ple by which three basis waveform eigen-
structures could be extracted from the EEG
and used to reliably predict the global inte-
gration of different brain systems. These
three basis waveforms were found to account
for 85% of the covariation within a multi-
channel EEG recording and were further-
more found to exhibit neuroanatomical
accuracy in the horizontal, sagittal, and cor-
onal planes. This methodology, based on
coherence information in the EEG, has been
used in the development of Hudspeth’s
(1999–2004a) ‘‘Neuroelectric Eigen Images’’
(NEI) in the NeuroRep QEEG analysis
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software, making the study of connection
patterns in the brain available to inspection.

In the next issue of Journal of Neurother-
apy, Hudspeth provides further explanation
of this technique and provides evidence for
its validity. Especially compelling is his mag-
netic resonance imaging showing white mat-
ter tracts in the cortex with electrodes
superimposed according to their anatomi-
cally grounded solution position (not their
10–20 system position). The anatomical solu-
tion provided by the NEI appears to line up
with known anatomical locations or posi-
tions in which white matter tracts perforate
the cortex. In addition, the eyes closed versus
the eyes open conditions produce functional
changes that are reflected in the NEI. This
type of face validity is helpful in understand-
ing more practical aspects of the NEI. The
calculations used in this methodology are
explained later in this article.

CHILDHOOD SEXUAL ABUSE (CSA)
AND EEG COHERENCE

CSA has been hypothesized to change
neural circuitry (Teicher, Glod, Surrey, &
Swett, 1993), but little research in the CSA
considers the influence of CSA on connection
patterns in the brain. Researchers at McLean
Hospital in Belmont, Massachusetts (Ito,
Teicher, Glod, & Ackerman, 1998) were the
first to look at the relationship between EEG
coherence and early abuse. They found higher
levels of left hemisphere alpha coherence and
significant left greater than right asymmetries
in the alpha band in children experiencing
CSA and=or physical abuse. In addition, it
was found that left hemisphere coherence
decayed more rapidly across electrode distance
in normal individuals as compared to abused
individuals, implicating deficits in left-sided
brain functional differentiation among abused
individuals. Unfortunately, this study was lim-
ited by its focus on alpha band (8–12 Hz)
coherence only, its failure to control for drug
effects, and its failure to assess posttraumatic
stress disorder (PTSD) status.

Ito et al. (1998) also found higher levels of
left hemisphere alpha coherence and reversed
asymmetry in physically and=or sexually

abused children to an adult sexual trauma
group. This study also explored activity in
additional EEG frequency bandwidths and
included an adult nonclinical group for com-
parison. Specifically, the CSA group was
compared with the non-CSA (NCSA) group
for overall left versus right hemisphere coher-
ence as well as focal coherence differences.
Townsend, Black, and Bodenhamer-Davis
(2001) examined QEEG variable and Minne-
sota Multiphasic Personality Inventory
(Butcher, Dahlstrom, Graham, Tellegen, &
Kaemmer, 1989) patterns of 12 adult outpati-
ents reporting CSA and compared them with
a matched sample of outpatients who
reported they had not experienced CSA. They
found the CSA group had significantly lower
alpha relative power in nearly all leads of the
International 10–20 electrode placement sites.
Alpha is a brain rhythm associated with sus-
pended processing, and relative percent
power provides an index for the allocation
of energy in the brain to the various frequency
bands. Exploratory post hoc analyses found
differences between the groups in the relation-
ship between variability of alpha relative
power in the posterior regions and frontal-
posterior coherence. Specifically, focal versus
diffuse alpha relative power in posterior
regions was related to frontal-posterior con-
nectivity only in the NCSA group. These pre-
liminary findings implicate a lack of
regulation of the posterior sites via the frontal
cortex in individuals with a history of CSA.

In follow-up, Black, Hudspeth, Townsend,
and Bodenhamer-Davis (2002) examined
QEEG abnormalities and coherence patterns
based on the complex eigenimages of 15 adult
outpatients reporting CSA and compared
them with a matched sample of outpatients
who reported they had not experienced CSA.
Increased EEG abnormalities were found to
be associated with the CSA group, including
decreased connectivity (functional differentia-
tion) in the left frontal regions in the theta
and beta bands, whereas increased connectiv-
ity (functional redundancy) characterized
posterior central regions across all bands in
the CSA group compared to the control group.
Important caveats of this study were that it did
not control for drug effects and did not
assess PTSD status. The aforementioned

144 JOURNAL OF NEUROTHERAPY



EEG studies provide preliminary evidence for
neuropsychological consequences associated
with CSA, more specifically, left hemisphere
coherence deficits.

The purpose of our study was to describe
the methodology QEEG-based neuroelectric
coherence measure developed by Hudspeth
(1994–2004a) and report results of an appli-
cation of this measure to an investigation
of QEEG characteristics of adults reporting
CSA. It was expected that, consistent with
Black et al. (2002) findings, the two groups
would exhibit differences of right and left
hemisphere coherence in at least one of the
bandwidths. Specifically, it was expected
that Black et al. findings of theta hyperco-
herence on the right and alpha hypercoher-
ence on the left in CSA adults as compared
to NCSA adults and Ito et al.’s (1998) find-
ings of greater average alpha left hemisphere
coherence in abused children as compared to
normals would be replicated. The two
groups were expected to exhibit a different
degree and pattern of coherence in at least
one of the bandwidths at the level of the indi-
vidual electrode as was demonstrated in the
Black et al. study. However, because an
unmedicated, nonclinical sample was
recruited, it was not known prior to the
study what frequency or localization pat-
terns might be exhibited.

METHOD

Participants

Forty-eight individuals participated in this
study. The CSA group participants (n¼ 24)
were recruited from the Dallas=Fort Worth
area by fliers posted in university and area
clinics, and areas designated for public
postings across the University of North
Texas (UNT) campus. Each person was
interviewed to assess exclusionary criteria
and CSA. Twenty-four age-matched control
participants who had not experienced CSA
were recruited in the same manner for the
NCSA group. Incoming new clients of the
UNT Neurotherapy Lab clinic and new
practicum students of the UNT Neurother-
apy Lab were also recruited as participants.

Similarly, these individuals were interviewed
to assess exclusionary criteria and CSA.

Other requirements for participant inclu-
sion were sexual trauma experienced before
age 14, no history of traumatic brain injury,
no loss of consciousness greater than 5 min,
no current alcohol or substance abuse,
and no current use of medication suspected
to affect the EEG. Requirements for control
inclusion were denial of any type of childhood
trauma (e.g., physical abuse) plus no major
head injuries, no current depression, no sleep
disorders, no current psychiatric diagnoses,
no current overuse of drugs or alcohol, no
neurological disease, and absence of convul-
sion or seizure. Participants were matched
based on age (within 7 years), gender, and
handedness. All participants were asked to
meet medication wash-out times (5 to 7 times
the half-life) for all substances except caffeine
and nicotine, for which 1 to 4 times the half-
life was considered sufficient to avoid with-
drawal effects on the EEG. In addition, all
participants were 18 years of age or older.
All participants meeting selection criteria
were given a free topographic map of their
eyes closed QEEG results and a 20-min expla-
nation upon completion.

Tables 1 and 2 show the demographic
characteristics of both groups. The ages ran-
ged from 18 to 59 (M�SD¼ 32.31�11.42).
Women comprised 92% of the sample, and a
European=White ethnic background com-
prised 83% of the sample. Participants with
some undergraduate college education com-
prised 50% of the sample, whereas partici-
pants with a graduate-level education
comprised 46% of the sample.

Measures

For the CSA group, a medical, develop-
mental, and CSA history was gathered by
clinical interview providing information on
the perpetrator; participant’s age at the time
of the first abuse; and duration, frequency,
nature, and severity of the abuse. Sexual
abuse was defined as sexual intrusion, genital
or digital penetration, molestation with gen-
ital contact, or fondling at or before the
age of 14 by others exhibiting some sort of
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power over the child by virtue of being older
or more powerful physically or mentally
than the child.

Additional psychological measures admi-
nistered in the investigation included the
Clinician-Administered PTSD Scale (Blake
et al., 2000), the Wechsler Abbreviated Scale
of Intelligence (Wechsler, 1999), and the
Minnesota Multiphasic Personality Inven-
tory (Butcher et al., 1989), including supple-
mentary scales of PK (Keane, Malloy, &
Fairbank, 1984) and PS (Schlenger & Kulka,
1989) to assess PTSD. Results of these addi-
tional measurements are beyond the scope of
this article and will be reported elsewhere.
Only the results from the QEEG measures
are reported here and additional results are
reported elsewhere.

Procedures

All procedures for this study were
approved by the Committee on the Use of
Human Subjects at UNT, and all data collec-
tion procedures for the study were performed
by the researcher and a QEEG-qualified
colleague. Prior to the EEG collection
appointment, potential participants com-
pleted an initial phone screening where the
study was explained and eligibility on
some of the inclusion=exclusion criteria
was assessed, most important the criteria that
related to drug usage. If initial criteria were
met, potential participants were given an
appointment time and a list of instructions
for complying with standard procedures.
Those included double washing the hair with

TABLE 2. Sociodemographic characteristics for CSA and NCSA groups.

CSAa NCSAb

Variable n % n %

Gender
Male 2 8 2 8
Female 22 92 22 92

Ethnicity
Caucasian 21 87 19 79
African American 3 13 2 8
Asian 0 0 3 13

English as 2nd language 0 0 4 17
Education

12 years 0 0 2 8
13–14 years 9 38 4 17
15–16 years 7 29 4 17
17þ years 8 33 14 58

PTSD 4 17 0 0

Note. CSA¼ childhood sexual abuse; NCSA¼no childhood sexual abuse; PTSD¼ posttraumatic stress disorder.
an¼24; bn¼24.

TABLE 1. Age and IQ characteristics for CSA and NCSA groups.

CSAa NCSAb

Characteristics M SD M SD

Age 31.6 10.4 33.0 12.4
Verbal IQ 115.0 11.2 115.5 11.5
Performance IQ 115.1 8.1 112.6 10.8
P-V difference .13 11.8 �2.8 9.0

Note. CSA¼ childhood sexual abuse; NCSA¼no childhood sexual abuse; P�V (Performance IQ–Verbal IQ)¼.
an¼24; bn¼24.
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a stripping shampoo, obtaining a good night’s
rest for 2 nights prior to the appointment,
eating a substantial meal 1½ to 2 hr prior
to appointment time, abstaining from
caffeinated beverages the morning of the
appointment, and abstaining from alcohol
and over-the-counter drugs according to
wash out times. Upon arrival, a face-to-face
interview was conducted to explain the study,
obtain written informed consent, and deter-
mine eligibility for the remaining inclusion=
exclusion criteria. Those who met criteria
were prepared for EEG collection.

During EEG collection, participants were
seated comfortably in a sound-attenuated
room with windows allowing for natural
light. Brain electrical activity was digitally
recorded on a Lexicor digital EEG system
(NRS-24) from 19 scalp electrodes on a
Lycra cap (ElectroCap International, Inc.,
Eaton, OH), according to the International
10–20 System of electrode placement (Jasper,
1958), and referenced to linked ear electrodes
and to a forehead ground contained in the
cap. Eye movements were detected using a
bipolar vertical electro-oculogram lead. Elec-
trode resistances were kept below 5 Kohms
and equal to within �1 Kohm between leads.
Bandpass filters were set at .5 to 30 Hz, and
the sampling rate was set at 128 samples
per second. Recordings were obtained in
the awake state with eyes closed (two collec-
tions of 5–8 min) and in the awake state
with eyes open (two collections of 5–8
min). Scalp electrodes were sterilized after
collection from each participant. After
EEG collection, participants completed the
clinical interview and, following a break,
psychological testing.

To meet the objectives of the study,
recordings were digitized, visually edited to
reduce artifacts (contamination resulting
from muscle tension and eye and body
movements) according to field standards
(Hammond & Gunkelman, 2001), and
subjected to quantitative spectral analysis.
A total of 30 to 100 sec of artifact-free
recording were selected from each collection
in the eyes closed condition for analysis.
EEG was reformatted in a variety of
referential and bipolar montages for visual
evaluation of the presence or absence of

regions of focal slowing, epileptiform activ-
ity, and=or asymmetries, by two trained
QEEG technicians. Interrater reliability of
ratings were 80% or greater for all visual
evaluations of abnormality. Discrepancies
were resolved for 100% agreement. The
NeuroRep (Hudspeth, 1994–2004a) QEEG
analysis and report system was used to
analyze absolute magnitude and EEG coher-
ence in each of the bands (delta, theta, alpha,
and beta) and did not contain paroxysmal
discharges.

Data Analysis

Editing was performed on the data
according to field standards as outlined in
Hammond and Gunkelman (2001). All data
were coded so that the researcher was blind
to group inclusion. Movement artifacts,
muscle tension creating amplitudes greater
than 5 microvolts, artifacts associated with
drowsiness, electrode artifacts, and transi-
ents 50% greater than background activity
were removed from the eyes-closed records.
Reliability between the records was
reviewed, and the best record or a combina-
tion of the two recordings was analyzed. If
reliability measures for coherence band-
widths as well as individual channels were
greater than or equal to 80%, the records
were added together and analyzed. If the
reliability between the records did not meet
these standards, the record that included
the participant’s best performance was cho-
sen for analysis according to the researcher’s
clinical judgment. The eyes-open records
were used only to assess for alpha blocking
and were not edited or analyzed.

The NEI connectivity indices were created
by means of a complex demodulation pro-
gram that computes auto- and cross-spectral
power density for all 19 channels, using a
second-order recursive digital filter devel-
oped by Neuromatics, Inc., expanded by
Hrybyk and then extended to 19 channels
by Hudspeth (Hudspeth, 1983; John et al.,
1980; Thatcher, Krause, & Hrybyk, 1987).
Coherence, phase, and asymmetry relation-
ships between all pairwise combinations of
19 electrodes (n¼ 171) for 4 frequency bands
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(delta, theta, alpha, and beta) and the unfil-
tered cross correlation are computed in the
program. The results produced by the
program are essentially identical to a fast
Fourier transformation, though it is more
efficient as results are computed only for
the frequency bands (Otnes & Enochson,
1972).

To reduce measurement problems asso-
ciated with the large number of statistical com-
parisons (171� 19 matrixes) inherent in
analysis of coherence, data were subjected to
Principal Components Analysis (Hotelling,
1933; Pearson, 1901) as adapted for waveform
data (John, Ruchkin, & Villegas, 1964). The
component loadings were then used to deter-
mine the three dimensions (basis waveforms)
inherent in each set of 19 waveforms, which
reflect anatomical location (Hudspeth, 1993).
The resulting three-dimensional eigenimage
or NEI reflects a reduction of the data into a
19� 3 matrix (Hudspeth, 1994–2004a).

NEI’s were generated in the NeuroRep
(Hudspeth, 1999a) software and based on
the mean for each group. An example of an
NEI can be seen in Figure 1. The NEI pro-
vides three different views of the coherence
relationships for four frequency bands plus
a combination of all frequency bands. The
horizontal view provides left–right and ante-
rior–posterior location information. The
sagittal view provides anterior–posterior
and dorsal–ventral location information.
The coronal view provides left–right and
dorsal–ventral location information. The
horizontal and vertical dotted lines represent
functional brain divisions. The intersection
of the horizontal and vertical dotted line
represents the point of origin, which is a
point in brain space directly below CZ.

NEI’s uniquely map brain anatomy into
functional space so that the functional
connectivities between sites are represented
by the distance between brain locations
(Hudspeth, 1994–2004a). Large distances
are associated with hypocoherence or
increased differentiation among sites, and
small distances are associated with hyperco-
herence or redundancy among sites.

NEI’s provide an immense reduction of
coherence information while preserving a par-
simonious view of functional brain space

(19� 3 matrix). Despite this reduction, it is
necessary to further reduce the data for statis-
tical analysis because of the small sample size.
Therefore, all three dimensions (component
loadings) of the NEI were used to compute a
vector length for each electrode and the
resulting value represented the distance from
the origin, which is a point directly below CZ:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
This equation represents a reduction of

the 3� 19 matrix to 19 vector lengths with
a functional anatomic grounding. Each vec-
tor length represents functional distances,
where larger distances from the origin are
associated with less coherence or connectiv-
ity in that region and smaller distances from
the origin are associated with more coher-
ence or more connectivity in that region.

To compare these findings with those of
Ito et al. (1998), the data were further
reduced to reflect differences between left
and right hemisphere coherence. To do this,
vector lengths representing distance from the
origin for each of eight electrodes per hemi-
sphere (excludes vertex sites) were averaged
to obtain composite hemisphere measures.

Statistical Analysis

Data were also analyzed for each site
(electrode). Thus, vector lengths representing
distance from the origin for each of 19 elec-
trodes were compared. Descriptive statistics,
graphs, and correlation matrices representa-
tive of the data were generated and examined
to identify means, standard deviations,
ranges, univariate outliers, and highly corre-
lated variables. Robust analyses of data were
performed along with standard analyses to
test the specific hypotheses.

Lateralized as well as individual vector
length differences between groups were com-
pared using Student’s t-tests to accept or
reject the null hypothesis that the groups’
mean vector lengths were equal. Pearson’s
chi-square tests with Yates’s continuity cor-
rection were used to analyze differences
between groups for incidence of neurological
assessment abnormalities.
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Because of small sample size and poten-
tial for outliers, there was an increased
likelihood the two groups would not meet
the assumptions of normality. It has been
demonstrated (Wilcox, 1998) that small depar-
tures from normality decrease power sub-
stantially, which decreases chances for
detecting real differences between groups. As

has been pointed out in numerous articles
and books (Birkes & Dodge, 1993; Hampel,
Ronchetti, Rousseeuw, & Stahel, 1986;
Hoaglin, Mosteller, & Tukey, 1985; Huber,
1981; Staudte & Sheather, 1990; Wilcox,
1996, 1997), standard and nonparametric
methods are insufficient and can lead to erro-
neous conclusions when even small departures

FIGURE 1. Neuroelectric images based on means for the childhood sexual abuse (CSA) group (top) and the
non-CSA (NCSA) group (bottom). Note. The figure shows three views of coherence for each band (delta,
theta, alpha, beta) as well as the bands collapsed together (cross-correlation) for each group.
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from normality exist (e.g., outliers, skewness,
unequal variances) or when there is an asso-
ciation between random variables. Estimators
that perform about as well as the sample
mean for normal distributions but continue
to perform well under departures from nor-
mality are provided with robust estimators.
Robust estimators utilize a type of trimming
so that extreme values are removed when a
measure of location is being estimated. The
t-test is based on the assumption that t has
a symmetric distribution around zero. How-
ever, for nonnormal distributions (even if
large), mean and standard deviation are
dependent, which can cause the mean of t to
differ from zero and result in situations
of poor control over the probability of a
Type I error and poor probability coverage.
Unequal variances also contribute to poor
power and inaccurate confidence intervals
because this condition results in alteration of
the variance of the Student’s t statistic such
that it does not approach 1.0. Robust analyses
were therefore implemented to prevent small
distribution changes from making large
changes in power or probability coverage.
Classical analyses were provided as well for
comparison purposes; however, only robust
results were interpreted. The goal was to
avoid missing important discriminations in
the data because of low power (Type II error)
or unequal variances between groups (Type I
error). Specifically, robust mean and robust
variance estimates were used to calculate
robust effect sizes. The interested reader is
referred to Wilcox (1997) for a detailed discus-
sion of robust analysis.

Cohen’s d, which assumes equal variance,
was used in the calculation of standard
effect sizes for group differences (Cohen,
1988):

dCohen ¼
ûu1 � ûu2

d̂dpooled

�����
�����

where û is the estimated population mean, and
d̂dpooled is the pooled estimated population
standard deviation. Tentative interpretive
benchmarks for dCohen are .10 to .30 is a small
effect size, .40 to .60 is a medium effect size,
and .70 and beyond is a large effect size when

there is no prior research to rely on for effect
size estimates (Cohen, 1992). Cohen (1988)
emphasized the tentative nature of such defini-
tions in a field of inquiry as diverse as beha-
vioral science. For Cohen’s d, the amount of
variance in the dependent variable by member-
ship in the CSA group for a small effect size is
2 to 2.2%, for a medium effect size is 3.8% to
8.3%, and for a large effect size is 10.9% and
beyond.

M-estimators, which do not assume equal
variances among groups, were used in the
analysis of robust effect sizes to control for
inflated sample variance, long confidence
intervals, and poor power with the following
formula:

drobust ¼
PMest1 � PMest2

n̂nbi1

where PMest is the robust M-estimator, and is
the square root of the biweight midvariance
for group 1. M-estimators remove extreme
values when estimating a measure of location
and trim to achieve evenly tailed distributions
(making possible asymmetric trimming or no
trimming). For a more detailed discussion of
M-estimators see Wilcox (1997).

Cohen’s r was used to calculate effect sizes
for the descriptive variables and qualitative
EEG ratings with the formula described by
Rosenthal and DiMatteo (2001):

rCohen ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
X 2ð1Þ

N

r

Cohen (1992) reports that using r, a value of
.05 to .148 can be interpreted as a small
effect size, a value of .196 to .287 can be
interpreted as a medium effect size, and a
value of .330 and higher can be interpreted
as a large effect size. For Cohen’s r, the
amount of variance in the dependent vari-
able by membership in the CSA group for
a small effect size is 2 to 2.2%, for a medium
effect size is 3.8% to 8.3%, and for a large
effect size is 10.9% and beyond.

Bootstrapping techniques were used to
generate robust p values, power, and confi-
dence intervals (Beran, 1986; Herrington,
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2001; Wilcox, 1997). Bootstrapping techni-
ques treat the sample as if it were the popula-
tion, resampling from the mean centered
scores with replacement to produce new
groups of scores to compare. The critical
value of the bootstrap test will be obtained
from the sample distribution using 500 boot-
strap samples. This technique does not
assume normality but does assume symmetry
to obtain narrow confidence intervals.

RESULTS

Prior to analyzing the data for the sepa-
rate hypotheses, a Pearson’s chi-square
analysis was performed on the descriptive
variables to assess for differences between

the groups. Responses yielded scores of 0
(no) or 1 (yes) for all but two variables (num-
ber of words remembered and reported level
of depression) for which Pearson’s point
biserial correlation was used. Table 3 pro-
vides chi-square, degrees of freedom, p, and
effect size values for the descriptive vari-
ables. The groups could be differentiated
by large effect sizes on several variables.
CSA group membership was associated with
having experienced seizures or seizurelike
symptoms, past drug abuse, and memory dif-
ficulties (as confirmed by remembering fewer
words they were asked to remember at the
beginning of the interview); experiencing
sleep difficulties; experiencing frequent
headaches or migraines; and having partici-
pated in counseling.

TABLE 3. Chi-square analysis of descriptive variables.

Descriptive Stats Chi-Square df p Effect Size

Birth complications 2.509 2 .285 .229
High fevers=Ear infections 2.101 2 .350 .209
Met milestones on time 1.021 2 .600 .146
Repeated a grade in school 2.087 2 .352 .208
Seizure or symptoms of 5.581 2 .061 .341
Prior EEG 1.021 2 .600 .146
Past drug abuse 10.157 2 .006 .460
Past alcohol abuse 2.944 2 .229 .248
Family hx of alcoholism 2.978 2 .226 .249
Memory difficulties 19.664 2 .0001 .64

point biserial
Words remembered �0.4548 6 .207
Episodes of confusion 4.364 2 .113 .300

point biserial
Level of reported depression 0.087 12 .008
Family hx of depression 3.136 2 .208 .256
Sleep difficulties 6.047 2 .049 .355
Daytime drowsiness 3.998 2 .136 .288
Bizarre mentation 3.2 2 .202 .258
Headaches=migraines 7.005 2 .030 .382
Past counseling 15.736 2 .0004 .573
Ever arrested 4.639 2 .098 .311
Daily caffeine 1.861 2 .394 .197
Smoker 1.627 2 .443 .184
Use meditation 0.9 2 .638 .137
Exposure to toxic agents 1.282 2 .527 .163
PTSD 4.364 2 .113 .302
High reliability between ec

records
4.321 2 .115 .300

Suspected EMG<5 uV incl 2.126 2 .345 .210

Note. EEG¼electroencephalogram; hx¼ history; PTSD¼posttraumatic stress disorder; EMG¼muscle artifact.
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Primary Analyses

The hypotheses addressed differences in
right and left hemisphere coherence as
defined by average vector length. Specifi-
cally, the first hypothesis predicted smaller
average vector length distances from the ori-
gin in the theta band on the right for the
CSA group when compared to the NCSA
group. The second hypothesis predicted
smaller average vector length distances from
the origin in the alpha band on the left for
the CSA group when compared to the NCSA
group. To test these hypotheses, one-tailed
Student’s t tests were performed. Results
did not indicate differences between the
groups (Figure 2, Table 4).

Planned Comparisons

To further explore possible differences
between the two groups, the pattern of
coherence for each of the bands at the level
of the individual electrode was examined.
Student’s t-tests were used to accept or reject
the null hypothesis that the groups mean vec-
tor lengths were equal. Effect sizes in both
bands were positive, indicating increased left
hemisphere alpha and beta vector length was
associated with CSA. Large distances from

the origin are indicative of hypocoherence
(differentiation).

Figures 3 to 7 provide summaries of the
results. Positive effect sizes indicate increased
vector length (hypocoherence) for the CSA
group in comparison to the NCSA group.
Negative effect sizes indicate decreased vector
length (hypercoherence) for the CSA group in
comparison to the NCSA group. Beginning
with the frontal sites shown on Figure 3, it
is apparent that a medium positive effect size
was obtained for delta at F8, indicating large
distances from the origin (hypocoherence) for
the CSA group as compared to the NCSA
group. Continuing across the head from front
to back, Figures 4 and 5 indicate moderate
effect sizes in the positive direction (hypoco-
herence) in the alpha band at F3, F4, T4,
and C4. Figure 5 shows moderate effect sizes
were also obtained for delta in the negative
direction (hypercoherence) at C3, C4, and
T5. Continuing toward the posterior sites
(Figure 7), results indicate small effect sizes
until approaching posterior vertex sites
(Figure 8). At PZ, a medium to large effect
size in the positive direction for alpha was
obtained, indicating large distances from the
origin (hypocoherence) for the CSA group
as compared to the NCSA group. A medium
effect in the positive direction was also seen at
PZ for beta and for the cross correlation (all
bands collapsed), indicating large distances
from the origin (hypocoherence) for the
CSA group as compared to the NCSA group.

These results are summarized in Figure 8.
The yellow and light orange indicate medium
to large effect sizes in the positive direction
and light blue indicates medium to large
effect sizes in the negative direction. Thus,
hypocoherence or decreased connectivity
(differentiation) in the CSA group as
compared to the NCSA group was apparent
on the right frontally in delta, and
posteriorly (PZ) in alpha and beta, as well
as the cross correlation. Hypercoherence or
increased connectivity (redundancy) in the
CSA group as compared to the NCSA group
was apparent centrally across the motor strip
and on the left temporally in delta. Statistical
tables containing t statistics, confidence
intervals, p values, power, means, and effect
sizes are available from the first author.

FIGURE 2. Left and right hemisphere effect sizes
based on mean distance from the origin for the alpha
and theta bands. Note. The plain bars represent clas-
sical effect sizes and the hatched bars represent
robust effect sizes.
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DISCUSSION

Earlier research uncovered evidence of
damage to subcortical structures of the brain
affecting cortical function (Bremner et al.,
1997;1993), but no previous studies had

NEI methodology to closely identify corti-
cal–cortical intercommunication dysfunc-
tion. Our results show a pattern and degree
of functional differences between the NCSA
group and CSA group across all bands.
Despite statistical error ramifications for
making more comparisons rather than aver-
aging cortical regions, greater clinical impor-
tance was given to gain information related

FIGURE 3. Effect sizes based on mean distance
from the origin for each band as well as the bands
collapsed together (cross-correlation) for sites F1,
F2, F7, and F8. Note. The plain bars represent clas-
sical effect sizes and the hatched bars represent
robust effect sizes.

FIGURE 4. Effect sizes based on mean distance
from the origin for each band as well as the bands
collapsed together (cross-correlation) for sites F3,
F4, T3, and T4. Note. The plain bars represent clas-
sical effect sizes and the hatched bars represent
robust effect sizes.

FIGURE 5. Effect sizes based on mean distance
from the origin for each band as well as the bands
collapsed together (cross-correlation) for sites C3,
C4, T5, and T6. Note. The plain bars represent clas-
sical effect sizes and the hatched bars represent
robust effect sizes.

FIGURE 6. Effect sizes based on mean distance
from the origin for each band as well as the bands
collapsed together (cross-correlation) for sites P3,
P4, O1, and O2. Note. The plain bars represent clas-
sical effect sizes and the hatched bars represent
robust effect sizes.
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to integration across brain regions as high
functioning samples have not before been
considered in the CSA QEEG literature.
Priority was therefore given to examining
whether important differences were missed
by limiting evaluation to only one band per
hemisphere. This required lenience with
regard to Type I=Type II error balance. A

fuller evaluation and consideration of med-
ium effect sizes made it possible to see
decreased connectivity on the right frontally
(F8) in the delta band, frontally (F3, FZ, F4)
and centro-temporally on the right (T4, C4)
in the alpha band, and posteriorly (PZ) in
the alpha and beta bands, as well as in the
cross-correlation. Increased connectivity
was also evidenced centrally across the
motor strip (C3, C4, and CZ) and on the left
temporally (T5) in the delta band.

These findings are in contrast to prior
findings by Black et al. (2002) of decreased
connectivity in left frontal regions in the theta
and beta bands and increased connectivity in
posterior central regions across all bands in
the CSA group as compared to the NCSA
group. Thus, a very different picture arises
for the nonclinical groups than was obtained
for the clinical groups. It may be the obtained
differences in results relate to medication
effects and lower functionality in the Black
et al. findings. Perhaps these findings were
derived by chance because of multiple com-
parisons. It is also possible that our findings
describe the functional brain characteristics
of resilience in the face of CSA.

If the functions of the regions of the
brain are taken into consideration, the CSA

FIGURE 7. Effect sizes based on mean distance
from the origin for each band as well as the bands
collapsed together (cross-correlation) for sites FZ,
CZ, and PZ. Note. The plain bars represent classical
effect sizes and the hatched bars represent robust
effect sizes.

FIGURE 8. Classical and robust effect size topographic maps; Dependent measure—distance from the origin
for NeuroRep (Hudspeth, 1999a) neuroelectric images. Note. Based on means and standard deviation.
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group exhibited decreased connectivity (dis-
connection) in regions important for com-
munication in combination with increased
connectivity (rigidity) in regions important
in level of body arousal. The nonclinical
CSA group exhibited decreased connectivity
(disconnection) in regions important for
emotional expression and body arousal.
Based on connectivity patterns, we would
expect that the NCSA group would have dif-
ficulty with emotional expression and=or
communication and intact general communi-
cation. In contrast, based on connectivity
patterns in the clinical group, we would
expect some impairment in overall communi-
cation. Based on decreased connectivity pat-
terns, we would expect body arousal to be
low for the nonclinical group but heightened
for the clinical group because of increased
connectivity patterns. Thus, resilience in the
high-functioning, nonclinical group may
relate to the ability to avoid or disconnect
from emotionally laden expression and to
maintain a low level of body arousal.

This functional description of the clinical
CSA group based on connectivity patterns
is consistent with the neuropsychological
literature that shows poorer verbal than
performance IQ scores (Ito et al., 1993) for
a clinical CSA group, and heightened physi-
cal (heart rate responses) and emotional
arousal for a CSA group with PTSD versus
CSA without PTSD during the recall of sex-
ual trauma (Shin et al., 1999).

A concern in this data analysis is that of
p value significance. In reaction to much
debate over the past decade about overreli-
ance on statistical significance (Borenstein,
1997; Kirk, 1996)as well as recommendations
issued by the American Psychological Asso-
ciation Task Force on Statistical Inference
(see Thompson, 2002, for review), statistical
significance was not relied on as the deter-
mining factor for the interpretations made
in this study. Instead, effect sizes were used
to characterize the degree to which the CSA
group diverged from the NCSA group to
highlight clinical significance. Because effect
sizes have not been reported in prior coher-
ence research with CSA, it was not known
how best to interpret these effects, so Cohen’s
benchmarks for effect size interpretation

were used (e.g., for dCohen .4–.6¼ a medium
effect size, for rCohen .196–.287¼medium
effect size). It is hoped the effect sizes
reported here will serve as a starting point
for future research to provide meaningful
understandings of these effect sizes as they
relate to CSA.

Beyond effect sizes, power was taken into
account in interpretation of results. Low
power served to prevent statistically signifi-
cant p values despite moderate effect sizes.
However, this was a time intensive study
(6–8 hr of testing with each participant) with
a small number of participants because of
rigid exclusion criteria. Although power
was compromised because of low total sam-
ple size, the value of gaining a purer look at
physiological and psychological underpin-
nings of CSA without the mask of medica-
tions was gained. The rigid exclusion
criteria used may have biased the sample
toward CSA participants who have devel-
oped resilience. A methodological study by
Clark-Carter (1997) found that researchers
typically do not consider power in their ana-
lyses and run a high risk of Type II error,
resulting in decreased recognition of interest-
ing effects. In addition, given the low power
evident partly as a result of the small sample
size, it did not make sense to adjust for
multiple contrasts. Therefore, effect sizes
are considered a summarization of the data
providing information about the degree to
which CSA impacted the variable.

In addition, a model has been presented
for working with coherence data in a statisti-
cally modern and parsimonious way. As this
study is one of the first attempts to examine
the impact of CSA on cortical integration in
high-functioning adults, it provides a starting
point for future research, suggesting impor-
tant differences exist. A representative sam-
ple of the statistical code required to run
these coherence analyses can be requested
from the first author for the purpose of future
replication. Finally, values representing
distance from the origin were used in this
analysis as this was determined to provide
the most comparable way to view the data
with prior research. However, the data could
be analyzed in terms of interelectrode
differences with some minor changes in the
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statistical code. A representative sample of
the statistical code required to run such a
comparison can also be requested from the
first author.

The first aim of this study was to describe in
detail the methodology behind the QEEG-
based neuroelectric coherence measure devel-
oped by Hudspeth (1994–2004a).The challenge
for the clinician utilizing QEEG measures and
interventions is how to interpret findings when
different measures produce differing results.
Research suggests increased accuracy for
EEG bivariate coherence estimates of near
neighbor sites but increased chance for
erroneous conclusions when comparing more
distant sites (Kus et al., 2004; Liberati et al.,
1997) and increased overall accuracy for multi-
variate estimates of coherence in comparison
to bivariate estimates of coherence (Kus et al.,
2004). Hudspeth’s (1999–2004a) NEIs in the
NeuroRep QEEG analysis software, provide
a multivariate measure of EEG coherence that
takes into account the full spatio-temporal
nature of continuous time series brain data.
The clinician should consider the QEEG
analysis as part of an evaluation that also
includes background information, behavioral
observation, other psychological testing,
symptom checklists, and an understanding of
the limits of the results obtained by the various
measures. Future research could compare the
various coherence measurement techniques in
a human sample with behavioral validation
provided from a functional brain region symp-
tom checklist and neuropsychological testing.
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