The Effects of Heart Rate Variability Training on Sensorimotor Rhythm: A Pilot Study
Abstract
Heart rate variability (HRV) training and EEG Biofeedback are techniques used to improve neurological disorders in both clinical and optimal performance populations. HRV training uses combined respiration and heart rate biofeedback to achieve synchrony between the changes in breathing and heart rate. This specific signature of synchronization of breathing and heart rate changes appears to correlate with a relaxed state and cognitive clarity. HRV may provide a promising index for both physical and emotional stress. Improvements in mental processing (Thayer, Hansen, Saus-Rose, & Johnson, 2009) and emotional stability(Applehans & Lueken, 2006) have been demonstrated as a result of HRV training. A similar mental state is the target of EEG biofeedback training when parameters are set to increase sensorimotor rhythm (SMR). SMR is usually trained using the frequency band 12–15 Hz. These frequencies are called SMR only when they are produced across the sensorimotor strip (C3, Cz, C4). In other locations, 12–15 Hz is simply called beta. SMR production has been closely linked to a state of calm, relaxed focus (Sterman, 1996). This article proposes that HRV training may be associated with increased levels of SMR. Preliminary data have been
collected for 40 clients. Twenty clients were athletes training to improve performance, and 20 clients were from a clinical population aiming to increase SMR as a part of their program. A 3-min sample of EEG baseline data was compared to a 3-min sample of EEG data collected
during HRV training. Mean microvolt values were collected for SMR during both the baseline recording and during the HRV training. T-test results show that there was a statistically significant increase in SMR during HRV training as compared to baseline (p<.001). This
suggests that increased HRV leads to increases in production of SMR.
Published
2016-08-23
Issue
Section
SCIENTIFIC FEATURES
© International Society for Neurofeedback and Research (ISNR), all rights reserved. This article (the “Article”) may be accessed online from ISNR at no charge. The Article may be viewed online, stored in electronic or physical form, or archived for research, teaching, and private study purposes. The Article may be archived in public libraries or university libraries at the direction of said public library or university library. Any other reproduction of the Article for redistribution, sale, resale, loan, sublicensing, systematic supply, or other distribution, including both physical and electronic reproduction for such purposes, is expressly forbidden. Preparing or reproducing derivative works of this article is expressly forbidden. ISNR makes no representation or warranty as to the accuracy or completeness of any content in the Article. From 1995 to 2013 the Journal of Neurotherapy was the official publication of ISNR (www. Isnr.org); on April 27, 2016 ISNR acquired the journal from Taylor & Francis Group, LLC. In 2014, ISNR established its official open-access journal NeuroRegulation (ISSN: 2373-0587; www.neuroregulation.org).