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REVIEW ARTICLE

ALPHA EEG ACTIVITY DEPENDS ON THE INDIVIDUAL DOMINANT
RHYTHM FREQUENCY

Olga Mikhailovna Bazanova

Biofeedback Software Laboratory, State Research Institute of Molecular Biology and Biophysics,
Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk, Russia

Exploring the role of the electroencephalographic (EEG) alpha oscillations in the processes of
central and autonomic regulation of the cognitive and psychomotor performance generates
considerable interest. However, until now there was no accurate definition of what alpha
activity is, and which indices characterize it. This is a theoretical article that attempts to
define EEG alpha-activity phenomena; define their physical, molecular, and morphological
nature; and highlight the difference in its indices connected with different individual alpha
frequencies and their role in optimal functioning. Specifically, this article examines individual
alpha activity indices: (a) the individual alpha peak frequency; (b) activation magnitude mea-
sured by estimating the amount of alpha amplitude suppression in response to eyes-open
and individual alpha band width; and (c) three alpha ‘‘autorhythmicity’’ indices: intraspindle
amplitude variability, spindle length, and steepness. Throughout, the article provides a num-
ber of suggestions on how alpha activity indices are connected with the individual spectral
distribution of the alpha frequency and why these individual alpha activity peculiarities
are important for neurofeedback training effectiveness.

INTRODUCTION

Since the time of the eminent Russian physiol-
ogist Ivan Michailovich Sechenov, it was
pointed out that the body is an amazing system
with many complexities and a special potential
for improving itself with feedback connections
(Bernstein, 1967). Such self-improvement may
target what is now called ‘‘peak performance’’
(R. N. Singer, 2002; Vernon, 2009) or ‘‘optimal
functioning’’ (Keefe, 1978) and can be achieved
with biofeedback technology (Bazanova,
Mernaya, & Shtark, 2009; Hanslmayr, Sauseng,
Doppelmayr, Schabus, & Klimesch, 2005;
Vernon & Gruzelier, 2008). The recent identifi-
cation of specific brain signatures involved in

optimal cognitive and psychomotor functioning
demonstrates its association with general
enhancement of the electroencephalographic
(EEG) alpha activity (Bazanova & Aftanas,
2008; Bazanova, Gvozdev, Mursin, Verevkin,
& Shtark, 2003; Hummel et al., 2004;
Baumeister, Reinecke, Liesen, & Weiss, 2008).
Thus, this article argues that EEG alpha activity
reflects a certain type of self-control (top-down)
process and that the properties of this process-
related activity may vary among individuals.

Despite the key role of EEG alpha activity
in optimal functioning—known since Berger’s
time—it is not clear which qualities character-
ize it (e.g., increasing or decreasing alpha
amplitude, left or right shift of spectral alpha
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peak frequency, or alpha synchronization or
desynchronization). Therefore, this review aims
to determine (a) what phenomena could be
called ‘‘EEG alpha activity’’ and what brain
mechanisms are underlying this, (b) which
EEG parameters characterize EEG alpha
activity, and (c) their intra- and interindividual
variability.

From physics we know that wave activity is
characterized by three main parameters: fre-
quency, amplitude, and phase. So it is possible
to define three main index groups of the alpha
wave activity (Figure 1):

1. Frequency of the dominant posterior
EEG rhythm (Niedermeyer, 1999; Nunez,
Wingeier, & Silberstein, 2001), which is
assessed as individual alpha peak frequency
in an eyes-closed condition (IAPF; Angelakis,
Stathopoulou, & Frymiare, 2007; Bazanova,
2011; Hooper, 2005).

2. Responsiveness=activation, which is asses-
sed by alpha amplitude suppression in
response to opening of the eyes (Barry,
Clarke, Johnstone, Magee, & Rushby,
2007; Del Percio et al., 2011; Kirshfieldt,
2005; Nunez et al., 2001), and width of the
frequency range of amplitude suppression,

or individual alpha bandwidth (Bazanova &
Aftanas, 2006, 2008).

3. ‘‘Autorhythmicity’’ (or bursting or spindle
forming process), which is a result of phase
resetting (Ivanitsky & Lebedev, 2007;
Thatcher, North, & Biver, 2008; Timofeev
et al., 2002).

THE IAPF

Many empirical studies present evidence that
IAPF varies intraindividually as a function of
age—it increases through childhood until
pubertal age (Bazanova, 2008; Stroganova,
Orekhova, & Posikera, 1999) and decreases
after 40 years of age (Clark et al., 2004). A
few studies have shown the hormonal influence
on IAPF—it increases with progesterone activity
enhancement during menstrual cycle in
women (Baker & Colrain, 2010; Bazanova &
Mernaya, 2008; Creutzfeldt et al., 1976; Solis-
Ortiz, Guevara, & Corsi-Cabrera, 2004), and in
conditions when cortisol blood level increases
(Becker, Creutzfeldt, Schwibbe, & Wuttke,
1980; Tops, van Peer, Wester, Wijers, & Korf,
2006). Moreover, IAPF varies depending on

FIGURE 1. Alpha activity indices. Note. EC¼ eyes closed – bold line spectra; EO¼ eyes open – dotted line spectra). (Color figure avail-
able online.)

ALPHA EEG DOMINANT RHYTHM FREQUENCY 271



the state individuals are during resting
(baseline) conditions, and their personal
involvement in a cognitive performance task
(Hummel et al., 2004; Klimesch, Sauseng, &
Hanslmayr, 2007; Ng & Raveendran, 2007).
Good task performance is related with higher
IAPF (Angelakis, Lubar, & Stathopoulou,
2004; Klimesch, Schimke, & Pfurtscheller,
1993), and neurofeedback training (NFT) direc-
ted on increasing IAPF may be used to improve
cognitive performance (Angelakis et al., 2007).
A decrease in IAPF is related to a drop in per-
formance (Klimesch et al., 1993) or to fatigue
(Ng & Raveendran, 2007).

IAPF doesn’t always increase after NFT to
enhance the upper alpha power. In a recent
study investigating the enhancement of the
upper alpha power with NFT and its impact
on the peak performance of musical achieve-
ment, we showed that IAPF increased only in
students with a resting baseline alpha fre-
quency lower than 10 Hz (LAF subjects). On
the contrary, students with original IAPF higher
than 10 Hz (HAF) did not change or even
decreased their IAPF in a post-NFT resting con-
dition (Bazanova et al., 2009). Hence, it could
be proposed that differences in alpha peak fre-
quency reflect different mechanisms of brain
activation and alpha wave generation.

In a study with twins, Gavrish and Malykh
(1994) proposed that the nature of different
alpha-frequency components is heritable.
Other genetic studies confirm the high heri-
tability of the resting IAPF (Anohkin, Muller,
Lindenberger, Heath, & Myers, 2006; Smit,
Wright, Hansell, Geffen, & Martin, 2006). It is
now evident that IAPF reflects individual
genetic influences on the underlying neural
mechanisms of the alpha waves generation
(Steriade, 1999; Steriade & Timofeev, 2003).

Evidence from animal models suggests that
alpha wave frequency is a result of the local
cortical network tuning, which depends on
Ca2þ T-channels activity (Lopes da Silva,
1991; Steriade, 1999; Steriade & Timofeev,
2003). It was shown that blocking of the
Ca2þ oscillations (an intracellular signal, rather
than an EEG one) is associated with blocking of
the spindle wave refractory period, which lies

in the origin of the 6 to 10 Hz oscillations (Lüthi
& McCormick, 1998). So frequency of the
Ca2þ oscillations determines the dominant
brain frequency (Lüthi & McCormick, 1998).
These experimental results support the hypoth-
esis by Michael Livanov and John Eccles about
the inhibitory role of delaying the rhythmic
waves generated in the thalamus for brain
and mind self-regulation (Eccles, 1994;
Livanov, 1984; Livanov & Dumenko, 1987).

Among different alpha frequency measure-
ments (individual alpha peak frequency, mean
and center of gravity), IAPF is preferential for
studying between individual differences
(Hooper, 2005). As shown by Greg Hooper
(2005), the contrasts in upper and lower alpha
bands may be explained in terms of the
variability or distribution of the peak alpha
frequency itself. However, the definition of
appropriate frequency bands and the choice
of recording reference limit the interpretability
of quantitative EEG. The analysis of fixed
frequency bands could therefore blur the
real alpha peak, masking the age- or
function-related differences. To study the
endophenotypic qualities of the alpha fre-
quency, we asked, ‘‘In which experimental
condition and where topographically is IAPF
mostly stable and reproducible?’’ We then ana-
lyzed the ‘‘test–retest’’ EEGs from 96 male sub-
jects aged 26 to 40 recorded twice over 14 to
15 days. EEG was recorded in resting eyes-
closed and eyes-open conditions and analyzed
in a fixed standard 8–12 Hz frequency band, as
well as in an individually determined alpha
frequency band. It appeared that the intraindi-
vidual correlation coefficient was strongest in
posterior brain areas, in the eyes-closed
condition, and assessed with individually
determined alpha band. The weakest intraindi-
vidual correlation coefficient was calculated in
anterior areas, in the eyes open condition, and
using the fixed standard 8–12 Hz alpha range
(Bazanova, 2011). We did not find the lateral-
ity influence on the IAPF mean. Bodenmann
and coauthors showed, too, that genotype-
dependent differences in IAPF were inde-
pendent from EEG recording location
(Bodenmann et al., 2009). So it could be
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concluded that alpha generation in healthy
individuals has a universal origin.

What is the functional role of the human
alpha rhythm frequency? An eminent Russian
psychophysiologist, Artur Lebedev (1994,
2006), has proposed that ‘‘cyclical oscillations
in the alpha rhythm determine the capacity
and speed of working memory. The higher
the frequency the greater the capacity and the
speed of memory’’ (Lebedev, 1994, p. 257).
Then, Klimesch et al., (1993) argued that
thalamo-cortical feedback loops oscillating
within the alpha frequency range allow search-
ing and identification of encoded information.
He speculated that faster oscillating feedback
loops would correspond to faster access to
encoded information. These theories are sup-
ported by the results of the following studies.
Klimesch et al. (1993) found that the alpha peak
frequency of good working memory performers
lies about 1 Hz higher than that of poor working
memory performers. We had shown that read-
ing is better in musicians with higher, rather
than lower, IAPF (Bazanova et al., 2009). The
same results were revealed by the functional
Val158Met polymorphism of the catechol-O-
methyltransferase (COMT) gene, where LAF-
Val=VAL homozygote subjects demonstrated a
lower score in a counting task than HAF-Met=
MET homozygote young men (Bodenmann
et al., 2009).

With the question ‘‘Are smarter brains run-
ning faster?’’ Posthuma, Neale, Boomsma, and
de Geus (2001) concluded that both peak fre-
quency and the dimensions of IQ were highly
heritable (range¼ 66–83%). But, in this study,
a large part of the genetic variance in alpha
peak frequency as well as in working memory
and processing speed was due to nonadditive
factors. Moreover, there was no evidence of a
genetic correlation between alpha peak fre-
quency and any of the four WAIS dimensions.
So there must be additional EEG indices
predicting cognitive ability.

In our experiment using the median of
posterior IAPF from a resting eyes-closed
condition, 96 healthy male subjects were div-
ided into two groups: those with low (LAF,
IAPF< 10 Hz) and those with high (HAF, IAPF

�10 Hz) alpha frequency. It appeared that
LAF and HAF subjects differed in psychometric
strategies for achieving success in nonverbal
creative tasks. LAF subjects emphasized orig-
inality, whereas HAF emphasized fluency in
reaching the same performance score in the
Torrance test (Bazanova & Aftanas, 2008).
However, the subjects with highest and lowest
IAPF level showed the highest originality score
in a nonverbal creativity task (see Figure 2).

We proposed that different behavior strate-
gies observed in LAF and HAF subjects could
be due to (a) genetic factors for individual
patterns of spontaneous waking EEG and (b)
different neurophysiological mechanisms of
brain activation in low and high alpha fre-
quency ranges (Kirshfeldt, 2005).

THE RESPONSIVENESS/ACTIVATION
MAGNITUDE

Vaez Mousavi and colleagues conceptualized
two aspects of the energetic state, ‘‘arousal’’
and ‘‘activation’’ (Vaez Mousavi, Barry, Rushby,
& Clarke, 2007). ‘‘Arousal’’ has been defined as
the energetic state at any particular time, and
task-related ‘‘activation’’ as the task-related
change in state from resting baseline to the task

FIGURE 2. The interrelationships between individual alpha peak
frequency and originality in a nonverbal task in low (LAF) and
high (HAF) alpha frequency male subjects.
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situation. Accordingly, EEG data activation
magnitude indicates the amount of alpha
amplitude suppression in response to eyes
opening (Barry et al., 2007). Recent investiga-
tions showed that EEG measures of visual and
cognitive activation are a promising avenue of
study in the search for putative endophe-
notypes for individual cognitive strategy type
(Ivanitsky, Ivanitsky, & Sysoeva, 2009; Loo &
Smalley, 2008) or for ADHD (Loo et al., 2010).

Doppelmayr and colleagues found a
significant interaction of task difficulty and
activation in the upper alpha band, indicating
both a weaker activation for the highly intelli-
gent subjects during the easy tasks and a
significant increase from easy to difficult tasks
for this group only (Doppelmayr, Klimesch,
Hodlmoser, Sauseng, & Gruber, 2005).
Recently, Del Percio and coauthors tested the
hypothesis that, compared with nonathletes,
elite athletes are characterized by a reduction
of reactivity of EEG alpha rhythms (about
8–12 Hz) to eyes opening in the condition of
resting state, as a possible index of spatially
selective cortical activation (i.e., ‘‘neural
efficiency’’; Del Percio et al., 2011). It could
be proposed that activation magnitude varia-
bility is dependent on cognitive task difficulty
and professional experience and is particularly
associated with reaction time (Vaez Mousavi
et al., 2007) and psychomotor task perfor-
mance (Bazanova, Kondratenko, Kondratenko,
Mernaya, & Zhimulev, 2007). Moreover, the
amount of alpha suppression in response to
eyes opening depends on the neurohumoral
status (Bazanova & Mernaya, 2008; Mantanus,
Ansseau, Legros, & Timsit-Berthier, 1988) and
even the direction of eye movement (V. Kaiser,
Clemens, Leeb, Neuper, & Pfurtscheller, 2009).
A decreased amount of alpha suppression in
response to eyes opening was demonstrated
in spinal-cord-injured individuals (Thuraising-
ham, Tran, Boord, & Craig, 2007) in compari-
son with healthy participants, and in patients
with attention deficit (Barry et al., 2003).
Increased activation magnitude is a result of
upper alpha stimulating neurofeedback
training (Bazanova et al., 2009; Schmelkina,
1999). Of interest, reactivity to eyes opening

increases from 3 to 20 years of age and
decreases after 40 years of age in HAF but
doesn’t change in LAF healthy male subjects
(Bazanova, 2008).

Based on simulations of the EEG,
Pfurtscheller and Lopes da Silva (1999)
hypothesized that with an increasing number
of interconnecting neurons and therewith an
increasing number of coherently activated
neurons, the amplitude increases and the fre-
quency decreases. Furthermore, they support
that EEG amplitude is negatively correlated
with frequency not only between frequency
bands, but also within frequency subcompo-
nents (Pfurtscheller & Lopes da Silva, 1999).

Measuring ERPs from the visual cortex after
the presentation of checkerboard stimuli,
Mazaheri and Jensen (2006) found that alpha
(M¼ 10 Hz) oscillations preserve their phase
relationship after visual stimuli with respect to
before the stimuli, while theta (M¼ 6.6 Hz)
phase-resetting oscillations are responsible for
visually evoked responses. They concluded
that alpha activity plays a modulatory role in
perception rather than generating visually
evoked responses (Mazaheri & Jensen, 2006).
In EEG-fMRI coupled investigations, Laufs and
coauthors (2006) showed that spontaneous
reductions in alpha amplitude over occipital
areas is connected to fronto-parietal fMRI acti-
vation when (a) theta power is low and beta
power is high and (b) PAF is high, while it is
connected to occipital fMRI activation when
beta power is low and theta power is high
and PAF is low and more variable. These differ-
ent interrelations between the amount of alpha
amplitude suppression (desynchronization)
and other EEG indices in low- and high-
frequency ranges is consistent with the idea
that alpha desynchronization serves an inte-
grative role through a corticocortical ‘‘gating’’
(Kirshfeldt, 2005; Tenke & Kayser, 2005). This
supports the idea that the neurophysiological
mechanisms by which activation is generated
are different in LAF and HAF subjects (Baza-
nova, Jafarova, Mazhirina, Mernaya, & Shtark,
2008), which is what was theoretically sup-
ported in previous investigations (Kirshfeldt,
2005; Mazaheri & Jensen, 2006).
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Until now, the alpha frequency range
boundaries were defined at 8–12=13 Hz on
the basis of general agreement, without a
theoretical basis and without respect to
functional features of alpha rhythm reactivity
to visual stimulation (D. A. Kaiser, 2001;
Thatcher et al., 2008; Arns, Gunkelman,
Breteler, & Spronk, 2008). Meanwhile, the
individual alpha bandwidth (IABW) is depen-
dent on (a) the age—it enlargers from 3 until
20 years (Bazanova, 2008); (b) neurohumoral
status in women—in high estrogen and pro-
gesterone stages, alpha band is wider than in
lower hormonal phases during the menstrual
cycle (Bazanova & Mernaya, 2008); and (c)
gender—women have a higher low alpha band
boundary frequency than men (Bazanova &
Mernaya, 2008; Carrier, Land, Buysse, Kupfer,
& Monk, 2001). Moreover, individual alpha
frequency bandwidth could vary in accordance
with brain activation (Bazanova & Aftanas,
2008; Kaiser, 2001; see Figure 3).

For example, IABW is wider in highly skilled
professional musicians than in nonmusicians

(Bazanova et al., 2003), and IABW is positively
correlated with the overall Torrance creativity
coefficient and flexibility in creative task perfor-
mance (Bazanova & Aftanas, 2008), academic
achievement (Bazanova & Aftanas, 2006), and
biofeedback training efficiency (Bazanova
et al., 2007).

Research by D. A. Kaiser (2001) and Baza-
nova and Aftanas (2010) supported the impor-
tance of accounting for individual alpha band
range in neurofeedback, showing that neuro-
feedback training applied in individual EEG fre-
quency ranges was much more efficient than
neurofeedback training of standard EEG fre-
quency ranges (SNFT; Figure 4). The SNFT pro-
tocol of decreasing theta=beta ratio not only
showed no psychometric improvement but also
aggravated the clinical condition of the ADHD
patient (Bazanova & Aftanas, 2010). Moreover,
we have shown that the enhancement of the
individual alpha bandwidth is one of the main
indicators of success in both neurofeedback
and other modalities of biofeedback training
(Bazanova et al., 2008; Bazanova et al.,

FIGURE 3. EEG spectral power in the parietal-occipital areas in the eyes-closed (white) and eyes-open (gray) conditions in healthy sub-
jects. Note. Spectral power decreases by more than 20% from baseline within individual alpha ranges (black); (a) and (b) examples of
different alpha-bandwidths. The abscissa shows frequency in Hz; the ordinate shows spectral power at the frequencies indicated in
mV2; IABW¼ individual alpha bandwidth; IAPF¼ individual alpha peak frequency.
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2007), indicating that the ability for enhancing
self-control could be associated with the indi-
vidual alpha band broadening (see Figure 4).

Activation magnitude measured as amount
of alpha amplitude suppression and bandwidth
during desynchronization raises many ques-
tions impossible to answer with simple spectral
analysis. For example, it is not clear (a) whether
the change of total power of particular brain
alpha oscillations results from a change in the
number of occurrences per minute rather than
the change of the average oscillations ampli-
tude, and (b) whether a change in the total
power of alpha oscillations relates to the whole
analyzed signal or rather to a small portion
(Kaplan, Borisov, Shishkin, & Ermolaev, 2002).
Thus, regardless of how powerful or statistically
significant the different estimations of averaged
EEG effects may be, it is difficult to make
meaningful interpretations if the estimations
are not matched to the EEG piecewise station-
ary structure (Kaplan et al., 2002).

To overcome such limitations of conven-
tional spectral analysis based on averaging pro-
cedures and to reveal dynamic and temporal
characteristics of alpha activity, an entire set
of individual short-term stationary EEG seg-
ments may be obtained (Brodsky et al., 1999;
Towers & Allen, 2009). Nonstationary phe-
nomena are present in the EEG, usually in
the form of transient events, such as alternation
of relatively homogenous intervals (bursting
segments) with different statistical features
(e.g., with different amplitude or variance;
Lopes da Silva, 1991). The idea that alpha
oscillations have a spindle-like form only dur-
ing sleep (Niedermeyer, 1999) has been con-
tradicted by Kellaway (2003), who described
the so-called lambda waves (8–13 Hz), which
may be identified using simple procedures.
The lambda wave is believed to represent
occipital lobe activity in a person actively read-
ing or scanning a room. Often, the subjects
have their eyes open and are looking carefully

FIGURE 4. Spectral power (A) and psychometric test performance (B) of a boy with attention deficit disorder in baseline condition (BC),
after 10 neurofeedback sessions decreasing the theta=beta ratio in standard EEG ranges (SNFT: theta¼ 4–8 Hz and beta¼ 13–18 Hz) and
in individual EEG ranges (INFT: theta¼3–5 Hz, beta¼10–14 Hz). Note. A: Gray areas denote spectral power in individual alpha
band. Spectra power in baseline condition¼ dotted line; numbers with arrows¼ individual alpha peak frequency. B: Black bars indicate
number of words read, and white bars indicate time to perform the task.
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at the ceiling tiles. The technician will have the
patient reproduce the activities that they felt
caused the waves to appear in the first place
(Kellaway, 2003). It was proposed that the
physiological basis of sleep spindles is probably
very similar to lambda and alpha waves. To
determine if the brain activation state would
modulate the composition of alpha spatial
microstates (spindles), Cantero and colleagues
(1999) used spatial segmentation methods to
show that (a) the mean duration of alpha spin-
dles is longer in relaxed wakefulness than in
drowsy periods and REM sleep, and (b) the
number of different amplitude values are more
abundant in drowsiness than in other brain
states.

Thus, overall, brain activation mechanisms
could become clearer if we consider the
third important EEG alpha activity feature—
spindle-ability of alpha oscillation.

AUTORHYTHMICITY

The spindle-form or autorhythmicity of alpha
oscillations is a product of the dynamics of neu-
ronal assemblies in the underlying cortical
activity (Dorokhov, 2003; Lehmann, Strik,
Henggeller, & Koukkou, 1994; Livanov &
Dumenko, 1987; W. Singer et al., 1997). Start-
ing from Livanov’s (1984) studies, it has been
shown that spindle oscillations are essential
for memory formation (Gais, Plihal, Wagner,
& Born, 2000; Lebedev, 1994, 2006), and
associated with short- and mid-term synaptic
plasticity (Steriade & Timofeev, 2003). A prob-
able molecular mechanism of these phenom-
ena was proposed by Destexhe and Sejnowski
(2003), who suggested that spindling may
activate the protein kinase—a molecular
‘‘gate’’—thus opening the door for gene
expression and allowing long-term changes to
take place following subsequent inputs.

Average amplitude within a segment indi-
cates the volume of the neuronal population.
The more neurons recruited into an assembly
through local synchronization of their activity,
the higher will be the oscillation amplitude of
the corresponding assembly (Brodsky et al.,
1999; Livanov & Dumenko, 1987; Lopes da

Silva, 1991). The assumption that alpha ampli-
tude reflects inhibition may, at first glance,
appear contradictory to the idea that alpha
plays an active role in information processing,
but the idea is that inhibition is an important
factor that controls the exact timing of an
oscillation. Thus, inhibition helps to establish
a highly selective activation pattern (Klimesch
et al., 2007).

Average spindle duration represents the
functional lifespan of the neuronal population
or the duration of operations produced by such
a population (Kaplan et al., 2002; Maltseva &
Masloboev, 1997). It has been shown that
longer spindles indicate a more relaxed state
(Huupponen et al., 2008). The spindle lifetime
is correlated with fluency in cognitive task per-
formance (Bazanova & Aftanas, 2008), and
efficiency of a single biofeedback training ses-
sion (Bazanova et al., 2007; Bazanova et al.,
2009). In addition, alpha-spindles are longer
in highly skilled musicians than in amateurs
(see Figure 5; Bazanova et al., 2009).

The shortest alpha segments belong to HAF
subjects with the highest individual alpha peak
frequencies and LAF subjects with the lowest
individual alpha peak frequencies (Figure 5;
Bazanova et al., 2008). The longest spindles
belong to persons with an average, or approxi-
mately average, 10 Hz individual alpha peak

FIGURE 5. Results of regression analysis of the relationship
between alpha spindle length and individual alpha peak
frequency in low (LAF n¼48) and high (HAF n¼ 48) alpha
frequency male subjects.

ALPHA EEG DOMINANT RHYTHM FREQUENCY 277



frequency. Multiple regression analysis showed
that spindle lifespan is positively related to
individual alpha peak frequency in LAF sub-
jects and negatively related in HAF subjects
(Figure 5; Bazanova et al., 2008). These data
suggest the different neuronal mechanism for
spindle formation between LAF and HAF sub-
jects. The membrane bistability might play an
important role in different patterns of spindles
displayed by thalamocortical neurons. Actually,
as shown by Fuentealba and colleagues, the
reticular neurons display membrane bistability,
as indicated by two discrete electrical potential
modes, with differential responsiveness to cor-
tical inputs (Fuentealba, Timofeev, Bazhenov,
Sejnowski, & Steriade, 2005). In addition,
in vivo (Steriade & Llinas, 1988; Steriade &
Timofeev, 2003) and in vitro (Bal &
McCormick, 1996) intracellular studies have
revealed at least two different patterns during
spontaneously occurring spindles, which may
be related to the actions exerted by nonbista-
ble and bistable neurons, respectively. Indeed,
nonbistable neurons fired stronger bursts with
higher intraburst frequencies, which are
assumed to generate IPSPs, �7–10 Hz. By con-
trast, IPSPs with lower amplitudes and higher
frequency are likely to be mainly generated
by single action potentials, as they occur during
the depolarizing plateau in bistable cells
(Fuentealba et al., 2005). If we assume that
longer spindles of stable brain activity imply
less information to process (as reflected by a
higher stability of the brain generator), whereas
shorter segments imply a higher number of
brain microstates caused by more different
steps of information processing, then it is poss-
ible to suggest that the intrasegment alpha
amplitude variability could be indexing a pha-
sic event (Oprisan, Prinz, & Canavier, 2004).
Probably, alpha-bursts are associated with a
brain microstate change (such as sleep spin-
dles), as demonstrated by its phasic intrusion
in a desynchronized background of brain
activity (Cantero, Atienza, Salas, & Gomez,
1999). It is important to know that intraspindle
amplitude variability decreases in coma or
stupor (Brenner, 2005) but increases during
cognitive loading (Kaplan & Borisov, 2003)

and in relation to the ability for self-control in
neurofeedback training (18–20 sessions;
Bazanova et al., 2008). Therefore, amplitude
variability, which is associated with phase
resetting intensity (Oprisan et al., 2004),
reflects engagement of cognitive control
mechanisms (Hanlsmayr et al., 2007; Lebedev,
1994; Livanov & Dumenko, 1987). Moreover,
in children, the phase resetting index and intra-
segment amplitude variability generally
increases as a function of age (Bazanova,
2008; Thatcher et al., 2008). This probably
reflects the well-known fact that ability for
self-control develops with age (Mischel, 2004;
Orekhova, Stroganova, Posikera, & Malykh,
2003). Therefore, alpha activity indices, includ-
ing individual alpha peak frequency, amount of
alpha suppression and individual alpha band-
width, and segmental parameters of alpha spin-
dle characterize the degree of cortical ability
for activation, neuronal plasticity, excitability,
and inhibition. In this way these parameters
could characterize self-regulation ability.

According to Klimesch’s ‘‘time inhibition’’
theory, the active role of alpha waves is seen
in a mechanism that may also underlie the
functional role of other oscillations (Klimesch
et al., 2007), whereas synchronization in the
alpha frequency range helps neurons in distrib-
uted networks to effectively activate common
target cells (Basar, 2006; Klimesch et al.,
2007). This alpha-frequency dependent mech-
anism plays an important role in the top-down
control of cortical activation. Mechanisms giv-
ing rise to alpha amplitude desynchronization
also reflect the dependence of brain activation
on the alpha frequency range. Klimesch has
proposed that upper-frequency alpha oscilla-
tions are related to top-down processes in a
complex sensory-motor system that controls
the access to and manipulation of stored infor-
mation (Klimesch et al., 2007). For example,
when a task requires that certain types of pro-
cesses be performed with stored information
(e.g., stored information must be kept in mind,
must not be retrieved or must be manipulated
such as with highly skilled musicians during
musical performance), individual alpha-activity
increases. As with overall brain activity,
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top-down control is not a unitary phenom-
enon. Recently, Ben-Simon and associates
(Ben-Simon, Podlipsky, Arieli, Zhdanov, &
Hendler, 2008) combined fMRI with EEG in a
study that proposed two parallel patterns of
alpha modulations and underpin their anatom-
ical basis in the human brain. These findings
suggest that the human alpha rhythm repre-
sents at least two simultaneously occurring pro-
cesses that characterize the ‘‘resting brain’’;
one is related to expected change in sensory
information, whereas the other is endogenous
and independent of stimulus change. Although
twin studies have long shown that heritability
of EEG oscillations is substantial (Enoch et al.,
2008; Smit et al., 2006), very little is known
about the genes underlying distinct EEG traits.
Early linkage analyses identified a genetic locus
on the distal part of chromosome 20q to
modulate alpha power which authors named
‘‘alpha-activity’’ (Anokhin et al., 1992). It is
likely, however, that multiple genes contribute
to ‘‘alpha phenotypes,’’ and a few candidate
genes were indeed found to affect alpha oscil-
lations. Recent genetic polymorphism studies
indicated that the gene on chromosome
5q13-14 of corticotrophin releasing hormone-
binding protein (CRH-BP) modulates alpha
power in isolated Plains American Indians
and Caucasians (Enoch et al., 2008). Moreover,
a functional variation in exon 7 of the gene on
chromosome 6 encoding the human GABA B
receptor (GABABR1) also influences EEG
voltage in the alpha range (Winterer et al.,
2003). Finally, more recent data of
Bodenmann et al. (2009) demonstrate that
mechanisms involving COMT contribute to
interindividual differences in alpha oscillation
frequency, which are functionally related to
executive performance (Bodenmann et al.,
2009). Recent data by Aftanas et al. (2008)
proposed that LAF and HAF subjects have dif-
ferent mechanisms for the modulatory influ-
ences of the balance of reinforcement system
activities on autonomic vascular regulatory pro-
cesses. Thus, the data just presented empha-
size the genetically different EEG patterns and
associated behavioral strategies dependent on
alpha frequency.

In conclusion, studying the alpha EEG
activity should not be limited only to alpha
amplitude intra- and interindividual variability
but should also include two other important
physical characteristics: frequency and phase
of alpha oscillations. Moreover, the evidence
that alpha oscillations play an active role in
cognitive processing and self-regulation is
strongly related with the genotypic and phe-
notypic difference between low and high fre-
quencies of the alpha activity. Moreover, the
neuronal activation strategies for increasing
IAPF as a result of biofeedback training are dif-
ferent according to the individual alpha fre-
quency. Several factors may be common in
the generation of different types of oscillations.
Nonetheless, the exact mechanisms for gener-
ating an oscillation may differ widely between
different frequency waves such as low- and
high-frequency alpha, depending on individual
network properties, cell types, cell physiology,
hormone level, blood feeding, and so on. The
role of such biological factors as immunologi-
cal, neurohumoral, and activity of heart-vessel
and breathing systems in the generation and
formation alpha oscillations is still unknown.
Thus, for a better understanding of the
functional role of alpha activity indices in peak
performance achievement through Biofeed-
back or BCI technologies, the investigation of
cortico-visceral interplay in conjunction with
the inherited alpha frequency EEG types may
be of crucial importance.
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Jääskeläinen, S. (2008). Electroencephalo-
gram spindle activity during dexmedetomi-
dine sedation and physiological sleep. Acta
Anaesthesiologica Scandinavia, 52, 289–294.

Ivanitsky, A. M., Ivanitsky, G. A., & Sysoeva, O.
V. (2009). Brain science: On the way to
solving the problem of consciousness. Inter-
national Journal of Psychophysiology, 73,
101–108.

Ivanitsky, A. M., & Lebedev, A. N. (2007).
Solving the riddle of the brain rhythms
[Russian]. Zh Vyssh Nerv Deiat Im I P Pavlova,
57, 636–640.

Kaiser, D. A. (2001). Rethinking standard
bands. Journal of Neurotherapy, 5, 96–101.

Kaiser, V., Clemens, B., Leeb, R., Neuper, C.,
& Pfurtscheller, G. (2009). Investigation of
cue-based vertical and horizontal eye move-
ments with electroencephalographic and
eye-tracking data. Clinical Neurophysiology,
120, 1988–1993.

Kaplan, A. Ia. (1999). The problem of the
segmental description of the human electro-
encephalogram [Russian]. Fiziol Cheloveka,
25, 125–133.

Kaplan, A. Ia., & Borisov, S. V. (2003).
Dynamic properties of segmental character-
istics of EEG alpha activity in rest conditions
and during cognitive tasks [Russian]. Zh
Vyssh Nerv Deiat Im I P Pavlova, 53, 22–32.

Kaplan, A. Ia., Borisov, S. V., Shishkin, S. L., &
Ermolaev, V. A. (2002). Analysis of the
segmental structure of EEG alpha-activity in
humans [Russian]. Ross Fiziol Zh Im I M
Sechenova, 88, 432–442.

Keefe, T. (1978). Optimal functioning: The
Eastern ideal in psychotherapy. Journal of
Contemporary Psychotherapy, 10, 16–24.

Kellaway, P. (2003). Orderly approach to visual
analysis: Elements of the normal EEG and
their characteristics in children and adults.
In J. S. Ebersole & T. A. Pedley (Eds.), Current
practice of clinical electroencephalography
(3rd ed., pp. 100–159). Philadelphia, PA:
Lippincott Williams and Wilkins.

Kirschfeld, K. (2005). The physical basis of
alpha waves in the electroencephalogram
and the origin of the ‘‘Berger effect.’’
Biological Cybernetics, 92, 177–185.

Klimesch, W., Sauseng, P., & Hanslmayr, S.
(2007). EEG alpha oscillations: The inhi-
bition–timing hypothesis. Brain Research
Reviews, 53, 63–88.

Klimesch, W., Schimke, H., & Pfurtscheller, G.
(1993). Alpha frequency, cognitive load and
memory performance. Brain Topography, 5,
241–251.

Laufs, H., Holt, J. L., Eltont, R., Krams, M.,
Paul, J. S., Krakow, K., & Kleinschmidt, A.
(2006). Where the BOLD signal goes
when alpha EEG leaves. Neuroimage, 31,
1408–1418.

Lebedev, A. N. (1994). The neurophysiological
parameters of human memory. Neuroscience
and Behavioral Physiology, 24, 254–259.

Lebedev, A. N. (2006). Mikhail Nikolaevich
Livanov (on his 100th anniversary of his
scientific, scientific-organizational, peda-
gogical and public activities) [Russian]. Usp
Fiziol Nauk, 37, 87–94.

Lehmann, D., Strik, W. K., Henggeller, B., &
Koukkou, M. (1994). Microstates in spon-
taneous momentary EEG potential maps
during visual imagery and abstract thought.
Brain Topography, 6, 251.

Livanov, M. N. (1984). Rhythms of the electro-
encephalogram and their functional signifi-
cance [Russian]. Zh Vyssh Nerv Deiat Im I P
Pavlova, 34, 613–626.

282 O. M. BAZANOVA



Livanov, M. N., & Dumenko, V. N. (1987). The
neurophysiological aspect of research on
the systems organization of brain activities
[Russian]. Usp Fiziol Nauk, 18, 6–16.

Loo, S. K., & Smalley, S. L. (2008). Preliminary
report of familial clustering of EEG measures
in ADHD. American Journal of Medical
Genetics Part B: Neuropsychiatric Genetics,
147B, 107–109.

Loo, S. K., Hale, S. T., Hanada, G., Macion, J.,
Shrestha, A., McGough, J. J., & Smalley, S. L.
(2010). Familial clustering and DRD4 effects
on electroencephalogram measures in multi-
plex families with attention deficit=hyperac-
tivity disorder. Journal of the American
Academy of Child and Adolescent Psychiatry,
49, 368–377.

Lopes da Silva, F. H. (1991). Neural mechanisms
underlying brain waves: From neural mem-
branes to networks. Electroencephalography
and Clinical Neurophysiology, 79, 81–93.
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